Cui, Jin
Using MRNet to Predict Lunar Rock Categories Detected by Chang'e 5 Probe
Cui, Jin, Zou, Yifei, Zhang, Siyuan
China's Chang'e 5 mission has been a remarkable success, with the chang'e 5 lander traveling on the Oceanus Procellarum to collect images of the lunar surface. Over the past half century, people have brought back some lunar rock samples, but its quantity does not meet the need for research. Under current circumstances, people still mainly rely on the analysis of rocks on the lunar surface through the detection of lunar rover. The Oceanus Procellarum, chosen by Chang'e 5 mission, contains various kind of rock species. Therefore, we first applied to the National Astronomical Observatories of the China under the Chinese Academy of Sciences for the Navigation and Terrain Camera (NaTeCam) of the lunar surface image, and established a lunar surface rock image data set CE5ROCK. The data set contains 100 images, which randomly divided into training, validation and test set. Experimental results show that the identification accuracy testing on convolutional neural network (CNN) models like AlexNet or MobileNet is about to 40.0%. In order to make full use of the global information in Moon images, this paper proposes the MRNet (MoonRockNet) network architecture. The encoding structure of the network uses VGG16 for feature extraction, and the decoding part adds dilated convolution and commonly used U-Net structure on the original VGG16 decoding structure, which is more conducive to identify more refined but more sparsely distributed types of lunar rocks. We have conducted extensive experiments on the established CE5ROCK data set, and the experimental results show that MRNet can achieve more accurate rock type identification, and outperform other existing mainstream algorithms in the identification performance.
Analyzing Patient Daily Movement Behavior Dynamics Using Two-Stage Encoding Model
Cui, Jin, Capstick, Alexander, Barnaghi, Payam, Scott, Gregory
In the analysis of remote healthcare monitoring data, time series representation learning offers substantial value in uncovering deeper patterns of patient behavior, especially given the fine temporal granularity of the data. In this study, we focus on a dataset of home activity records from people living with Dementia. We propose a two-stage self-supervised learning approach. The first stage involves converting time-series activities into text strings, which are then encoded by a fine-tuned language model. In the second stage, these time-series vectors are bi-dimensionalized for applying PageRank method, to analyze latent state transitions to quantitatively assess participants behavioral patterns and identify activity biases. These insights, combined with diagnostic data, aim to support personalized care interventions.
Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia
Cui, Jin, Capstick, Alexander, Barnaghi, Payam, Scott, Gregory
In remote healthcare monitoring, time series representation learning reveals critical patient behavior patterns from high-frequency data. This study analyzes home activity data from individuals living with dementia by proposing a two-stage, self-supervised learning approach tailored to uncover low-rank structures. The first stage converts time-series activities into text sequences encoded by a pre-trained language model, providing a rich, high-dimensional latent state space using a PageRank-based method. This PageRank vector captures latent state transitions, effectively compressing complex behaviour data into a succinct form that enhances interpretability. This low-rank representation not only enhances model interpretability but also facilitates clustering and transition analysis, revealing key behavioral patterns correlated with clinicalmetrics such as MMSE and ADAS-COG scores. Our findings demonstrate the framework's potential in supporting cognitive status prediction, personalized care interventions, and large-scale health monitoring.
Enhancing High-order Interaction Awareness in LLM-based Recommender Model
Wang, Xinfeng, Cui, Jin, Fukumoto, Fumiyo, Suzuki, Yoshimi
Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. However, existing approaches either disregard or ineffectively model the user-item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs' interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users' earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods in both direct and sequential recommendations.
RDRec: Rationale Distillation for LLM-based Recommendation
Wang, Xinfeng, Cui, Jin, Suzuki, Yoshimi, Fukumoto, Fumiyo
Large language model (LLM)-based recommender models that bridge users and items through textual prompts for effective semantic reasoning have gained considerable attention. However, few methods consider the underlying rationales behind interactions, such as user preferences and item attributes, limiting the reasoning capability of LLMs for recommendations. This paper proposes a rationale distillation recommender (RDRec), a compact model designed to learn rationales generated by a larger language model (LM). By leveraging rationales from reviews related to users and items, RDRec remarkably specifies their profiles for recommendations. Experiments show that RDRec achieves state-of-the-art (SOTA) performance in both top-N and sequential recommendations. Our source code is released at https://github.com/WangXFng/RDRec.
Enhanced Coherence-Aware Network with Hierarchical Disentanglement for Aspect-Category Sentiment Analysis
Cui, Jin, Fukumoto, Fumiyo, Wang, Xinfeng, Suzuki, Yoshimi, Li, Jiyi, Tomuro, Noriko, Kong, Wanzeng
Aspect-category-based sentiment analysis (ACSA), which aims to identify aspect categories and predict their sentiments has been intensively studied due to its wide range of NLP applications. Most approaches mainly utilize intrasentential features. However, a review often includes multiple different aspect categories, and some of them do not explicitly appear in the review. Even in a sentence, there is more than one aspect category with its sentiments, and they are entangled intra-sentence, which makes the model fail to discriminately preserve all sentiment characteristics. In this paper, we propose an enhanced coherence-aware network with hierarchical disentanglement (ECAN) for ACSA tasks. Specifically, we explore coherence modeling to capture the contexts across the whole review and to help the implicit aspect and sentiment identification. To address the issue of multiple aspect categories and sentiment entanglement, we propose a hierarchical disentanglement module to extract distinct categories and sentiment features. Extensive experimental and visualization results show that our ECAN effectively decouples multiple categories and sentiments entangled in the coherence representations and achieves state-of-the-art (SOTA) performance. Our codes and data are available online: \url{https://github.com/cuijin-23/ECAN}.