Goto

Collaborating Authors

 Cui, Jiajun


Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning

arXiv.org Artificial Intelligence

Knowledge tracing (KT) plays a crucial role in computer-aided education and intelligent tutoring systems, aiming to assess students' knowledge proficiency by predicting their future performance on new questions based on their past response records. While existing deep learning knowledge tracing (DLKT) methods have significantly improved prediction accuracy and achieved state-of-the-art results, they often suffer from a lack of interpretability. To address this limitation, current approaches have explored incorporating psychological influences to achieve more explainable predictions, but they tend to overlook the potential influences of historical responses. In fact, understanding how models make predictions based on response influences can enhance the transparency and trustworthiness of the knowledge tracing process, presenting an opportunity for a new paradigm of interpretable KT. However, measuring unobservable response influences is challenging. In this paper, we resort to counterfactual reasoning that intervenes in each response to answer \textit{what if a student had answered a question incorrectly that he/she actually answered correctly, and vice versa}. Based on this, we propose RCKT, a novel response influence-based counterfactual knowledge tracing framework. RCKT generates response influences by comparing prediction outcomes from factual sequences and constructed counterfactual sequences after interventions. Additionally, we introduce maximization and inference techniques to leverage accumulated influences from different past responses, further improving the model's performance and credibility. Extensive experimental results demonstrate that our RCKT method outperforms state-of-the-art knowledge tracing methods on four datasets against six baselines, and provides credible interpretations of response influences.


Differentiating Student Feedbacks for Knowledge Tracing

arXiv.org Artificial Intelligence

In computer-aided education and intelligent tutoring systems, knowledge tracing (KT) raises attention due to the development of data-driven learning methods, which aims to predict students' future performance given their past question response sequences to trace their knowledge states. However, current deep learning approaches only focus on enhancing prediction accuracy, but neglecting the discrimination imbalance of responses. That is, a considerable proportion of question responses are weak to discriminate students' knowledge states, but equally considered compared to other discriminative responses, thus hurting the ability of tracing students' personalized knowledge states. To tackle this issue, we propose DR4KT for Knowledge Tracing, which reweights the contribution of different responses according to their discrimination in training. For retaining high prediction accuracy on low discriminative responses after reweighting, DR4KT also introduces a discrimination-aware score fusion technique to make a proper combination between student knowledge mastery and the questions themselves. Comprehensive experimental results show that our DR4KT applied on four mainstream KT methods significantly improves their performance on three widely-used datasets.