Goto

Collaborating Authors

 Cui, Han


Direct Value Optimization: Improving Chain-of-Thought Reasoning in LLMs with Refined Values

arXiv.org Artificial Intelligence

We introduce Direct Value Optimization (DVO), an innovative reinforcement learning framework for enhancing large language models in complex reasoning tasks. Unlike traditional methods relying on preference labels, DVO utilizes value signals at individual reasoning steps, optimizing models via a mean squared error loss. The key benefit of DVO lies in its fine-grained supervision, circumventing the need for labor-intensive human annotations. Target values within the DVO are estimated using either Monte Carlo Tree Search or an outcome value model. Our empirical analysis on both mathematical and commonsense reasoning tasks shows that DVO consistently outperforms existing offline preference optimization techniques, even with fewer training steps. These findings underscore the importance of value signals in advancing reasoning capabilities and highlight DVO as a superior methodology under scenarios lacking explicit human preference information.


Exploring Hybrid Question Answering via Program-based Prompting

arXiv.org Artificial Intelligence

Question answering over heterogeneous data requires reasoning over diverse sources of data, which is challenging due to the large scale of information and organic coupling of heterogeneous data. Various approaches have been proposed to address these challenges. One approach involves training specialized retrievers to select relevant information, thereby reducing the input length. Another approach is to transform diverse modalities of data into a single modality, simplifying the task difficulty and enabling more straightforward processing. In this paper, we propose HProPro, a novel program-based prompting framework for the hybrid question answering task. HProPro follows the code generation and execution paradigm. In addition, HProPro integrates various functions to tackle the hybrid reasoning scenario. Specifically, HProPro contains function declaration and function implementation to perform hybrid information-seeking over data from various sources and modalities, which enables reasoning over such data without training specialized retrievers or performing modal transformations. Experimental results on two typical hybrid question answering benchmarks HybridQA and MultiModalQA demonstrate the effectiveness of HProPro: it surpasses all baseline systems and achieves the best performances in the few-shot settings on both datasets.


MiliPoint: A Point Cloud Dataset for mmWave Radar

arXiv.org Artificial Intelligence

Millimetre-wave (mmWave) radar has emerged as an attractive and cost-effective alternative for human activity sensing compared to traditional camera-based systems. mmWave radars are also non-intrusive, providing better protection for user privacy. However, as a Radio Frequency (RF) based technology, mmWave radars rely on capturing reflected signals from objects, making them more prone to noise compared to cameras. This raises an intriguing question for the deep learning community: Can we develop more effective point set-based deep learning methods for such attractive sensors? To answer this question, our work, termed MiliPoint, delves into this idea by providing a large-scale, open dataset for the community to explore how mmWave radars can be utilised for human activity recognition. Moreover, MiliPoint stands out as it is larger in size than existing datasets, has more diverse human actions represented, and encompasses all three key tasks in human activity recognition. We have also established a range of point-based deep neural networks such as DGCNN, PointNet++ and PointTransformer, on MiliPoint, which can serve to set the ground baseline for further development.


Explanation Graph Generation via Generative Pre-training over Synthetic Graphs

arXiv.org Artificial Intelligence

The generation of explanation graphs is a significant task that aims to produce explanation graphs in response to user input, revealing the internal reasoning process. This task is challenging due to the significant discrepancy between unstructured user queries and structured explanation graphs. Current research commonly fine-tunes a text-based pre-trained language model on a small downstream dataset that is annotated with labeled graphs. However, due to the limited scale of available datasets, this approach may prove to be insufficient in bridging the gap between natural language text and structured graphs. In this paper, to alleviate the above limitations, we propose a novel pre-trained framework EG3P(for Explanation Graph Generation via Generative Pre-training over synthetic graphs) for the explanation graph generation task. Specifically, we first propose a text-to-graph generative task to pre-train the model with the goal of bridging the text-graph gap. Additionally, we propose an automatic corpus synthesis strategy for synthesizing a large scale of high-quality corpus, reducing the reliance on costly manual annotation methods. Experimental results on ExplaGraphs show the effectiveness of EG3P that our model surpasses all baseline systems with remarkable margins. Besides, further analysis demonstrates that EG3P is able to generate better explanation graphs on actual reasoning tasks such as CommonsenseQA and OpenbookQA.


Blackbox Attacks on Reinforcement Learning Agents Using Approximated Temporal Information

arXiv.org Machine Learning

Recent research on reinforcement learning has shown that trained agents are vulnerable to maliciously crafted adversarial samples. In this work, we show how adversarial samples against RL agents can be generalised from White-box and Grey-box attacks to a strong Black-box case, namely where the attacker has no knowledge of the agents and their training methods. We use sequence-to-sequence models to predict a single action or a sequence of future actions that a trained agent will make. Our approximation model, based on time-series information from the agent, successfully predicts agents' future actions with consistently above 80% accuracy on a wide range of games and training methods. Second, we find that although such adversarial samples are transferable, they do not outperform random Gaussian noise as a means of reducing the game scores of trained RL agents. This highlights a serious methodological deficiency in previous work on such agents; random jamming should have been taken as the baseline for evaluation. Third, we do find a novel use for adversarial samples in this context: they can be used to trigger a trained agent to misbehave after a specific delay. This appears to be a genuinely new type of attack; it potentially enables an attacker to use devices controlled by RL agents as time bombs.