Goto

Collaborating Authors

 Cui, Chenhang


Bright Channel Prior Attention for Multispectral Pedestrian Detection

arXiv.org Artificial Intelligence

Multispectral methods have gained considerable attention due to their promising performance across various fields. However, most existing methods cannot effectively utilize information from two modalities while optimizing time efficiency. These methods often prioritize accuracy or time efficiency, leaving room for improvement in their performance. To this end, we propose a new method bright channel prior attention for enhancing pedestrian detection in low-light conditions by integrating image enhancement and detection within a unified framework. The method uses the V-channel of the HSV image of the thermal image as an attention map to trigger the unsupervised auto-encoder for visible light images, which gradually emphasizes pedestrian features across layers. Moreover, we utilize unsupervised bright channel prior algorithms to address light compensation in low light images. The proposed method includes a self-attention enhancement module and a detection module, which work together to improve object detection. An initial illumination map is estimated using the BCP, guiding the learning of the self-attention map from the enhancement network to obtain more informative representation focused on pedestrians. The extensive experiments show effectiveness of the proposed method is demonstrated through.


Deep Multi-View Subspace Clustering with Anchor Graph

arXiv.org Artificial Intelligence

Deep multi-view subspace clustering (DMVSC) has recently attracted increasing attention due to its promising performance. However, existing DMVSC methods still have two issues: (1) they mainly focus on using autoencoders to nonlinearly embed the data, while the embedding may be suboptimal for clustering because the clustering objective is rarely considered in autoencoders, and (2) existing methods typically have a quadratic or even cubic complexity, which makes it challenging to deal with large-scale data. To address these issues, in this paper we propose a novel deep multi-view subspace clustering method with anchor graph (DMCAG). To be specific, DMCAG firstly learns the embedded features for each view independently, which are used to obtain the subspace representations. To significantly reduce the complexity, we construct an anchor graph with small size for each view. Then, spectral clustering is performed on an integrated anchor graph to obtain pseudo-labels. To overcome the negative impact caused by suboptimal embedded features, we use pseudo-labels to refine the embedding process to make it more suitable for the clustering task. Pseudo-labels and embedded features are updated alternately. Furthermore, we design a strategy to keep the consistency of the labels based on contrastive learning to enhance the clustering performance. Empirical studies on real-world datasets show that our method achieves superior clustering performance over other state-of-the-art methods.