Goto

Collaborating Authors

 Cui, Chen


Implementing BERT and fine-tuned RobertA to detect AI generated news by ChatGPT

arXiv.org Artificial Intelligence

The abundance of information on social media has increased the necessity of accurate real-time rumour detection. Manual techniques of identifying and verifying fake news generated by AI tools are impracticable and time-consuming given the enormous volume of information generated every day. This has sparked an increase in interest in creating automated systems to find fake news on the Internet. The studies in this research demonstrate that the BERT and RobertA models with fine-tuning had the best success in detecting AI generated news. With a score of 98%, tweaked RobertA in particular showed excellent precision. In conclusion, this study has shown that neural networks can be used to identify bogus news AI generation news created by ChatGPT. The RobertA and BERT models' excellent performance indicates that these models can play a critical role in the fight against misinformation.


Salient Feature Extractor for Adversarial Defense on Deep Neural Networks

arXiv.org Artificial Intelligence

Recent years have witnessed unprecedented success achieved by deep learning models in the field of computer vision. However, their vulnerability towards carefully crafted adversarial examples has also attracted the increasing attention of researchers. Motivated by the observation that adversarial examples are due to the non-robust feature learned from the original dataset by models, we propose the concepts of salient feature(SF) and trivial feature(TF). The former represents the class-related feature, while the latter is usually adopted to mislead the model. We extract these two features with coupled generative adversarial network model and put forward a novel detection and defense method named salient feature extractor (SFE) to defend against adversarial attacks. Concretely, detection is realized by separating and comparing the difference between SF and TF of the input. At the same time, correct labels are obtained by re-identifying SF to reach the purpose of defense. Extensive experiments are carried out on MNIST, CIFAR-10, and ImageNet datasets where SFE shows state-of-the-art results in effectiveness and efficiency compared with baselines. Furthermore, we provide an interpretable understanding of the defense and detection process.


Multi-View Fuzzy Clustering with The Alternative Learning between Shared Hidden Space and Partition

arXiv.org Artificial Intelligence

As the multi-view data grows in the real world, multi-view clus-tering has become a prominent technique in data mining, pattern recognition, and machine learning. How to exploit the relation-ship between different views effectively using the characteristic of multi-view data has become a crucial challenge. Aiming at this, a hidden space sharing multi-view fuzzy clustering (HSS-MVFC) method is proposed in the present study. This method is based on the classical fuzzy c-means clustering model, and obtains associ-ated information between different views by introducing shared hidden space. Especially, the shared hidden space and the fuzzy partition can be learned alternatively and contribute to each other. Meanwhile, the proposed method uses maximum entropy strategy to control the weights of different views while learning the shared hidden space. The experimental result shows that the proposed multi-view clustering method has better performance than many related clustering methods.


Concise Fuzzy System Modeling Integrating Soft Subspace Clustering and Sparse Learning

arXiv.org Machine Learning

The superior interpretability and uncertainty modeling ability of Takagi-Sugeno-Kang fuzzy system (TSK FS) make it possible to describe complex nonlinear systems intuitively and efficiently. However, classical TSK FS usually adopts the whole feature space of the data for model construction, which can result in lengthy rules for high-dimensional data and lead to degeneration in interpretability. Furthermore, for highly nonlinear modeling task, it is usually necessary to use a large number of rules which further weakens the clarity and interpretability of TSK FS. To address these issues, a concise zero-order TSK FS construction method, called ESSC-SL-CTSK-FS, is proposed in this paper by integrating the techniques of enhanced soft subspace clustering (ESSC) and sparse learning (SL). In this method, ESSC is used to generate the antecedents and various sparse subspace for different fuzzy rules, whereas SL is used to optimize the consequent parameters of the fuzzy rules, based on which the number of fuzzy rules can be effectively reduced. Finally, the proposed ESSC-SL-CTSK-FS method is used to construct con-cise zero-order TSK FS that can explain the scenes in high-dimensional data modeling more clearly and easily. Experiments are conducted on various real-world datasets to confirm the advantages.