Goto

Collaborating Authors

 Cudlenco, Nicolae


Explaining Vision and Language through Graphs of Events in Space and Time

arXiv.org Artificial Intelligence

Artificial Intelligence makes great advances today and starts to bridge the gap between vision and language. However, we are still far from understanding, explaining and controlling explicitly the visual content from a linguistic perspective, because we still lack a common explainable representation between the two domains. In this work we come to address this limitation and propose the Graph of Events in Space and Time (GEST), by which we can represent, create and explain, both visual and linguistic stories. We provide a theoretical justification of our model and an experimental validation, which proves that GEST can bring a solid complementary value along powerful deep learning models. In particular, GEST can help improve at the content-level the generation of videos from text, by being easily incorporated into our novel video generation engine. Additionally, by using efficient graph matching techniques, the GEST graphs can also improve the comparisons between texts at the semantic level.


GEST: the Graph of Events in Space and Time as a Common Representation between Vision and Language

arXiv.org Artificial Intelligence

One of the essential human skills is the ability to seamlessly build an inner representation of the world. By exploiting this representation, humans are capable of easily finding consensus between visual, auditory and linguistic perspectives. In this work, we set out to understand and emulate this ability through an explicit representation for both vision and language - Graphs of Events in Space and Time (GEST). GEST alows us to measure the similarity between texts and videos in a semantic and fully explainable way, through graph matching. It also allows us to generate text and videos from a common representation that provides a well understood content. In this work we show that the graph matching similarity metrics based on GEST outperform classical text generation metrics and can also boost the performance of state of art, heavily trained metrics.