Well File:
- Well Planning ( results)
- Shallow Hazard Analysis ( results)
- Well Plat ( results)
- Wellbore Schematic ( results)
- Directional Survey ( results)
- Fluid Sample ( results)
- Log ( results)
- Density ( results)
- Gamma Ray ( results)
- Mud ( results)
- Resistivity ( results)
- Report ( results)
- Daily Report ( results)
- End of Well Report ( results)
- Well Completion Report ( results)
- Rock Sample ( results)
Csaba Szepesvari
Multi-view Matrix Factorization for Linear Dynamical System Estimation
Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari
We consider maximum likelihood estimation of linear dynamical systems with generalized-linear observation models. Maximum likelihood is typically considered to be hard in this setting since latent states and transition parameters must be inferred jointly. Given that expectation-maximization does not scale and is prone to local minima, moment-matching approaches from the subspace identification literature have become standard, despite known statistical efficiency issues. In this paper, we instead reconsider likelihood maximization and develop an optimization based strategy for recovering the latent states and transition parameters. Key to the approach is a two-view reformulation of maximum likelihood estimation for linear dynamical systems that enables the use of global optimization algorithms for matrix factorization. We show that the proposed estimation strategy outperforms widely-used identification algorithms such as subspace identification methods, both in terms of accuracy and runtime.
SDP Relaxation with Randomized Rounding for Energy Disaggregation
Kiarash Shaloudegi, Andrรกs Gyรถrgy, Csaba Szepesvari, Wilsun Xu
We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance over time based on the total energy-consumption signal of a household. The current state of the art is to model the problem as inference in factorial HMMs, and use quadratic programming to find an approximate solution to the resulting quadratic integer program. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations randomized rounding, as well as a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results both in synthetic and real-world datasets demonstrate the superiority of our method.
Following the Leader and Fast Rates in Linear Prediction: Curved Constraint Sets and Other Regularities
Ruitong Huang, Tor Lattimore, Andrรกs Gyรถrgy, Csaba Szepesvari
The follow the leader (FTL) algorithm, perhaps the simplest of all online learning algorithms, is known to perform well when the loss functions it is used on are positively curved. In this paper we ask whether there are other "lucky" settings when FTL achieves sublinear, "small" regret. In particular, we study the fundamental problem of linear prediction over a non-empty convex, compact domain. Amongst other results, we prove that the curvature of the boundary of the domain can act as if the losses were curved: In this case, we prove that as long as the mean of the loss vectors have positive lengths bounded away from zero, FTL enjoys a logarithmic growth rate of regret, while, e.g., for polyhedral domains and stochastic data it enjoys finite expected regret. Building on a previously known meta-algorithm, we also get an algorithm that simultaneously enjoys the worst-case guarantees and the bound available for FTL.
Multi-view Matrix Factorization for Linear Dynamical System Estimation
Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari
We consider maximum likelihood estimation of linear dynamical systems with generalized-linear observation models. Maximum likelihood is typically considered to be hard in this setting since latent states and transition parameters must be inferred jointly. Given that expectation-maximization does not scale and is prone to local minima, moment-matching approaches from the subspace identification literature have become standard, despite known statistical efficiency issues. In this paper, we instead reconsider likelihood maximization and develop an optimization based strategy for recovering the latent states and transition parameters. Key to the approach is a two-view reformulation of maximum likelihood estimation for linear dynamical systems that enables the use of global optimization algorithms for matrix factorization. We show that the proposed estimation strategy outperforms widely-used identification algorithms such as subspace identification methods, both in terms of accuracy and runtime.