Crowder, Dakarai
Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots
Crowder, Dakarai, Vandyck, Kojo, Sun, Xiping, McCann, James, Yuan, Wenzhen
Abstract-- Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, largescale tactile sensor placed onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting tactile data on a humanoid robot, our system provides insights into human-robot social touch, and displays that the use of fabric based sensors could be a potential way of advancing the development of spHRI systems for more natural and effective communication. I. INTRODUCTION Humans interact with each other using many differing modalities and touch is one that occurs naturally.
Extreme Image Transformations Facilitate Robust Latent Object Representations
Malik, Girik, Crowder, Dakarai, Mingolla, Ennio
Adversarial attacks can affect the object recognition capabilities of machines in wild. These can often result from spurious correlations between input and class labels, and are prone to memorization in large networks. While networks are expected to do automated feature selection, it is not effective at the scale of the object. Humans, however, are able to select the minimum set of features required to form a robust representation of an object. In this work, we show that finetuning any pretrained off-the-shelf network with Extreme Image Transformations (EIT) not only helps in learning a robust latent representation, it also improves the performance of these networks against common adversarial attacks of various intensities. Our EIT trained networks show strong activations in the object regions even when tested with more intense noise, showing promising generalizations across different kinds of adversarial attacks.
Extreme Image Transformations Affect Humans and Machines Differently
Malik, Girik, Crowder, Dakarai, Mingolla, Ennio
Some recent artificial neural networks (ANNs) claim to model aspects of primate neural and human performance data. Their success in object recognition is, however, dependent on exploiting low-level features for solving visual tasks in a way that humans do not. As a result, out-of-distribution or adversarial input is often challenging for ANNs. Humans instead learn abstract patterns and are mostly unaffected by many extreme image distortions. We introduce a set of novel image transforms inspired by neurophysiological findings and evaluate humans and ANNs on an object recognition task. We show that machines perform better than humans for certain transforms and struggle to perform at par with humans on others that are easy for humans. We quantify the differences in accuracy for humans and machines and find a ranking of difficulty for our transforms for human data. We also suggest how certain characteristics of human visual processing can be adapted to improve the performance of ANNs for our difficult-for-machines transforms.