Cross, Andrew D. J.
Graph Matching for Shape Retrieval
Huet, Benoit, Cross, Andrew D. J., Hancock, Edwin R.
We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in'soft' classification. Soft classification refers to a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class O. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the'true' probability distribution, representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data.
Graph Matching for Shape Retrieval
Huet, Benoit, Cross, Andrew D. J., Hancock, Edwin R.
We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in'soft' classification. Soft classification refersto a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class O. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the'true' probability distribution,representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data.
Graph Matching for Shape Retrieval
Huet, Benoit, Cross, Andrew D. J., Hancock, Edwin R.
We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in'soft' classification. Soft classification refers to a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class O. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the'true' probability distribution, representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data.
Recovering Perspective Pose with a Dual Step EM Algorithm
Cross, Andrew D. J., Hancock, Edwin R.
This paper describes a new approach to extracting 3D perspective structure from 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying pointcorrespondence matches.Unification is realised by constructing a mixture model over the bipartite graph representing the correspondence matchand by effecting optimisation using the EM algorithm. According to our EM framework the probabilities of structural correspondence gatecontributions to the expected likelihood function used to estimate maximum likelihood perspective pose parameters. This provides a means of rejecting structural outliers.
Recovering Perspective Pose with a Dual Step EM Algorithm
Cross, Andrew D. J., Hancock, Edwin R.
This paper describes a new approach to extracting 3D perspective structure from 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying pointcorrespondence matches. Unification is realised by constructing a mixture model over the bipartite graph representing the correspondence match and by effecting optimisation using the EM algorithm. According to our EM framework the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood perspective pose parameters. This provides a means of rejecting structural outliers.