Crosby, Matthew
Animal-AI 3: What's New & Why You Should Care
Voudouris, Konstantinos, Alhas, Ibrahim, Schellaert, Wout, Crosby, Matthew, Holmes, Joel, Burden, John, Chaubey, Niharika, Donnelly, Niall, Patel, Matishalin, Halina, Marta, Hernández-Orallo, José, Cheke, Lucy G.
The Animal-AI Environment is a unique game-based research platform designed to serve both the artificial intelligence and cognitive science research communities. In this paper, we present Animal-AI 3, the latest version of the environment, outlining several major new features that make the game more engaging for humans and more complex for AI systems. New features include interactive buttons, reward dispensers, and player notifications, as well as an overhaul of the environment's graphics and processing for significant increases in agent training time and quality of the human player experience. We provide detailed guidance on how to build computational and behavioural experiments with Animal-AI 3. We present results from a series of agents, including the state-of-the-art Deep Reinforcement Learning agent (dreamer-v3), on newly designed tests and the Animal-AI Testbed of 900 tasks inspired by research in comparative psychology. Animal-AI 3 is designed to facilitate collaboration between the cognitive sciences and artificial intelligence. This paper serves as a stand-alone document that motivates, describes, and demonstrates Animal-AI 3 for the end user.
Episodic Memory for Learning Subjective-Timescale Models
Zakharov, Alexey, Crosby, Matthew, Fountas, Zafeirios
In model-based learning, an agent's model is commonly defined over transitions between consecutive states of an environment even though planning often requires reasoning over multi-step timescales, with intermediate states either unnecessary, or worse, accumulating prediction error. In contrast, intelligent behaviour in biological organisms is characterised by the ability to plan over varying temporal scales depending on the context. Inspired by the recent works on human time perception, we devise a novel approach to learning a transition dynamics model, based on the sequences of episodic memories that define the agent's subjective timescale - over which it learns world dynamics and over which future planning is performed. We implement this in the framework of active inference and demonstrate that the resulting subjective-timescale model (STM) can systematically vary the temporal extent of its predictions while preserving the same computational efficiency. Additionally, we show that STM predictions are more likely to introduce future salient events (for example new objects coming into view), incentivising exploration of new areas of the environment. As a result, STM produces more informative action-conditioned roll-outs that assist the agent in making better decisions. We validate significant improvement in our STM agent's performance in the Animal-AI environment against a baseline system, trained using the environment's objective-timescale dynamics. An agent endowed with a model of its environment has the ability to predict the consequences of its actions and perform planning into the future before deciding on its next move. Models can allow agents to simulate the possible action-conditioned futures from their current state, even if the state was never visited during learning. As a result, model-based approaches can provide agents with better generalization abilities across both states and tasks in an environment, compared to their model-free counterparts (Racanière et al., 2017; Mishra et al., 2017).
The Animal-AI Environment: Training and Testing Animal-Like Artificial Cognition
Beyret, Benjamin, Hernández-Orallo, José, Cheke, Lucy, Halina, Marta, Shanahan, Murray, Crosby, Matthew
Recent advances in artificial intelligence have been strongly driven by the use of game environments for training and evaluating agents. Games are often accessible and versatile, with well-defined state-transitions and goals allowing for intensive training and experimentation. However, agents trained in a particular environment are usually tested on the same or slightly varied distributions, and solutions do not necessarily imply any understanding. If we want AI systems that can model and understand their environment, we need environments that explicitly test for this. Inspired by the extensive literature on animal cognition, we present an environment that keeps all the positive elements of standard gaming environments, but is explicitly designed for the testing of animal-like artificial cognition. All source-code is publicly available (see appendix).