Croicu, Mihai
From Newswire to Nexus: Using text-based actor embeddings and transformer networks to forecast conflict dynamics
Croicu, Mihai, von der Maase, Simon Polichinel
This study advances the field of conflict forecasting by using text-based actor embeddings with transformer models to predict dynamic changes in violent conflict patterns at the actor level. More specifically, we combine newswire texts with structured conflict event data and leverage recent advances in Natural Language Processing (NLP) techniques to forecast escalations and de-escalations among conflicting actors, such as governments, militias, separatist movements, and terrorists. This new approach accurately and promptly captures the inherently volatile patterns of violent conflicts, which existing methods have not been able to achieve. To create this framework, we began by curating and annotating a vast international newswire corpus, leveraging hand-labeled event data from the Uppsala Conflict Data Program. By using this hybrid dataset, our models can incorporate the textual context of news sources along with the precision and detail of structured event data. This combination enables us to make both dynamic and granular predictions about conflict developments. We validate our approach through rigorous back-testing against historical events, demonstrating superior out-of-sample predictive power. We find that our approach is quite effective in identifying and predicting phases of conflict escalation and de-escalation, surpassing the capabilities of traditional models. By focusing on actor interactions, our explicit goal is to provide actionable insights to policymakers, humanitarian organizations, and peacekeeping operations in order to enable targeted and effective intervention strategies.
Deep Active Learning for Data Mining from Conflict Text Corpora
Croicu, Mihai
High-resolution event data on armed conflict and related processes have revolutionized the study of political contention with datasets like UCDP GED, ACLED etc. However, most of these datasets limit themselves to collecting spatio-temporal (high-resolution) and intensity data. Information on dynamics, such as targets, tactics, purposes etc. are rarely collected owing to the extreme workload of collecting data. However, most datasets rely on a rich corpus of textual data allowing further mining of further information connected to each event. This paper proposes one such approach that is inexpensive and high performance, leveraging active learning - an iterative process of improving a machine learning model based on sequential (guided) human input. Active learning is employed to then step-wise train (fine-tuning) of a large, encoder-only language model adapted for extracting sub-classes of events relating to conflict dynamics. The approach shows performance similar to human (gold-standard) coding while reducing the amount of required human annotation by as much as 99%.