Creutzig, Felix
Using machine learning to understand causal relationships between urban form and travel CO2 emissions across continents
Wagner, Felix, Nachtigall, Florian, Franken, Lukas, Milojevic-Dupont, Nikola, Pereira, Rafael H. M., Koch, Nicolas, Runge, Jakob, Gonzalez, Marta, Creutzig, Felix
Climate change mitigation in urban mobility requires policies reconfiguring urban form to increase accessibility and facilitate low-carbon modes of transport. However, current policy research has insufficiently assessed urban form effects on car travel at three levels: (1) Causality -- Can causality be established beyond theoretical and correlation-based analyses? (2) Generalizability -- Do relationships hold across different cities and world regions? (3) Context specificity -- How do relationships vary across neighborhoods of a city? Here, we address all three gaps via causal graph discovery and explainable machine learning to detect urban form effects on intra-city car travel, based on mobility data of six cities across three continents. We find significant causal effects of urban form on trip emissions and inter-feature effects, which had been neglected in previous work. Our results demonstrate that destination accessibility matters most overall, while low density and low connectivity also sharply increase CO$_2$ emissions. These general trends are similar across cities but we find idiosyncratic effects that can lead to substantially different recommendations. In more monocentric cities, we identify spatial corridors -- about 10--50 km from the city center -- where subcenter-oriented development is more relevant than increased access to the main center. Our work demonstrates a novel application of machine learning that enables new research addressing the needs of causality, generalizability, and contextual specificity for scaling evidence-based urban climate solutions.
The built environment and induced transport CO2 emissions: A double machine learning approach to account for residential self-selection
Nachtigall, Florian, Wagner, Felix, Berrill, Peter, Creutzig, Felix
Understanding why travel behavior differs between residents of urban centers and suburbs is key to sustainable urban planning. Especially in light of rapid urban growth, identifying housing locations that minimize travel demand and induced CO2 emissions is crucial to mitigate climate change. While the built environment plays an important role, the precise impact on travel behavior is obfuscated by residential self-selection. To address this issue, we propose a double machine learning approach to obtain unbiased, spatially-explicit estimates of the effect of the built environment on travel-related CO2 emissions for each neighborhood by controlling for residential self-selection. We examine how socio-demographics and travel-related attitudes moderate the effect and how it decomposes across the 5Ds of the built environment. Based on a case study for Berlin and the travel diaries of 32,000 residents, we find that the built environment causes household travel-related CO2 emissions to differ by a factor of almost two between central and suburban neighborhoods in Berlin. To highlight the practical importance for urban climate mitigation, we evaluate current plans for 64,000 new residential units in terms of total induced transport CO2 emissions. Our findings underscore the significance of spatially differentiated compact development to decarbonize the transport sector.
Tackling Climate Change with Machine Learning
Rolnick, David, Donti, Priya L., Kaack, Lynn H., Kochanski, Kelly, Lacoste, Alexandre, Sankaran, Kris, Ross, Andrew Slavin, Milojevic-Dupont, Nikola, Jaques, Natasha, Waldman-Brown, Anna, Luccioni, Alexandra, Maharaj, Tegan, Sherwin, Evan D., Mukkavilli, S. Karthik, Kording, Konrad P., Gomes, Carla, Ng, Andrew Y., Hassabis, Demis, Platt, John C., Creutzig, Felix, Chayes, Jennifer, Bengio, Yoshua
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.