Creager, Elliot
Show, Don't Tell: Uncovering Implicit Character Portrayal using LLMs
Jaipersaud, Brandon, Zhu, Zining, Rudzicz, Frank, Creager, Elliot
Tools for analyzing character portrayal in fiction are valuable for writers and literary scholars in developing and interpreting compelling stories. Existing tools, such as visualization tools for analyzing fictional characters, primarily rely on explicit textual indicators of character attributes. However, portrayal is often implicit, revealed through actions and behaviors rather than explicit statements. We address this gap by leveraging large language models (LLMs) to uncover implicit character portrayals. We start by generating a dataset for this task with greater cross-topic similarity, lexical diversity, and narrative lengths than existing narrative text corpora such as TinyStories and WritingPrompts. We then introduce LIIPA (LLMs for Inferring Implicit Portrayal for Character Analysis), a framework for prompting LLMs to uncover character portrayals. LIIPA can be configured to use various types of intermediate computation (character attribute word lists, chain-of-thought) to infer how fictional characters are portrayed in the source text. We find that LIIPA outperforms existing approaches, and is more robust to increasing character counts (number of unique persons depicted) due to its ability to utilize full narrative context. Lastly, we investigate the sensitivity of portrayal estimates to character demographics, identifying a fairness-accuracy tradeoff among methods in our LIIPA framework -- a phenomenon familiar within the algorithmic fairness literature. Despite this tradeoff, all LIIPA variants consistently outperform non-LLM baselines in both fairness and accuracy. Our work demonstrates the potential benefits of using LLMs to analyze complex characters and to better understand how implicit portrayal biases may manifest in narrative texts.
Promoting User Data Autonomy During the Dissolution of a Monopolistic Firm
Solanki, Rushabh, Creager, Elliot
The deployment of AI in consumer products is currently focused on the use of so-called foundation models, large neural networks pre-trained on massive corpora of digital records. This emphasis on scaling up datasets and pre-training computation raises the risk of further consolidating the industry, and enabling monopolistic (or oligopolistic) behavior. Judges and regulators seeking to improve market competition may employ various remedies. This paper explores dissolution -- the breaking up of a monopolistic entity into smaller firms -- as one such remedy, focusing in particular on the technical challenges and opportunities involved in the breaking up of large models and datasets. We show how the framework of Conscious Data Contribution can enable user autonomy during under dissolution. Through a simulation study, we explore how fine-tuning and the phenomenon of "catastrophic forgetting" could actually prove beneficial as a type of machine unlearning that allows users to specify which data they want used for what purposes.
Online Algorithmic Recourse by Collective Action
Creager, Elliot, Zemel, Richard
Research on algorithmic recourse typically considers how an individual can reasonably change an unfavorable automated decision when interacting with a fixed decision-making system. This paper focuses instead on the online setting, where system parameters are updated dynamically according to interactions with data subjects. Beyond the typical individual-level recourse, the online setting opens up new ways for groups to shape system decisions by leveraging the parameter update rule. We show empirically that recourse can be improved when users coordinate by jointly computing their feature perturbations, underscoring the importance of collective action in mitigating adverse automated decisions.
Remembering to Be Fair: On Non-Markovian Fairness in Sequential Decision Making (Preliminary Report)
Alamdari, Parand A., Klassen, Toryn Q., Creager, Elliot, McIlraith, Sheila A.
Fair decision making has largely been studied with respect to a single decision. In this paper we investigate the notion of fairness in the context of sequential decision making where multiple stakeholders can be affected by the outcomes of decisions, and where decision making may be informed by additional constraints and criteria beyond the requirement of fairness. In this setting, we observe that fairness often depends on the history of the sequential decision-making process and not just on the current state. To advance our understanding of this class of fairness problems, we define the notion of non-Markovian fairness in the context of sequential decision making. We identify properties of non-Markovian fairness, including notions of long-term, anytime, periodic, and bounded fairness. We further explore the interplay between non-Markovian fairness and memory, and how this can support construction of fair policies in sequential decision-making settings.
Robust Machine Learning by Transforming and Augmenting Imperfect Training Data
Creager, Elliot
Machine Learning (ML) is an expressive framework for turning data into computer programs. Across many problem domains -- both in industry and policy settings -- the types of computer programs needed for accurate prediction or optimal control are difficult to write by hand. On the other hand, collecting instances of desired system behavior may be relatively more feasible. This makes ML broadly appealing, but also induces data sensitivities that often manifest as unexpected failure modes during deployment. In this sense, the training data available tend to be imperfect for the task at hand. This thesis explores several data sensitivities of modern machine learning and how to address them. We begin by discussing how to prevent ML from codifying prior human discrimination measured in the training data, where we take a fair representation learning approach. We then discuss the problem of learning from data containing spurious features, which provide predictive fidelity during training but are unreliable upon deployment. Here we observe that insofar as standard training methods tend to learn such features, this propensity can be leveraged to search for partitions of training data that expose this inconsistency, ultimately promoting learning algorithms invariant to spurious features. Finally, we turn our attention to reinforcement learning from data with insufficient coverage over all possible states and actions. To address the coverage issue, we discuss how causal priors can be used to model the single-step dynamics of the setting where data are collected. This enables a new type of data augmentation where observed trajectories are stitched together to produce new but plausible counterfactual trajectories.
SURFSUP: Learning Fluid Simulation for Novel Surfaces
Mani, Arjun, Chandratreya, Ishaan Preetam, Creager, Elliot, Vondrick, Carl, Zemel, Richard
Modeling the mechanics of fluid in complex scenes is vital to applications in design, graphics, and robotics. Learning-based methods provide fast and differentiable fluid simulators, however most prior work is unable to accurately model how fluids interact with genuinely novel surfaces not seen during training. We introduce SURFSUP, a framework that represents objects implicitly using signed distance functions (SDFs), rather than an explicit representation of meshes or particles. This continuous representation of geometry enables more accurate simulation of fluid-object interactions over long time periods while simultaneously making computation more efficient. Moreover, SURFSUP trained on simple shape primitives generalizes considerably out-of-distribution, even to complex real-world scenes and objects. Finally, we show we can invert our model to design simple objects to manipulate fluid flow.
Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification
Adragna, Robert, Creager, Elliot, Madras, David, Zemel, Richard
Robustness is of central importance in machine learning and has given rise to the fields of domain generalization and invariant learning, which are concerned with improving performance on a test distribution distinct from but related to the training distribution. In light of recent work suggesting an intimate connection between fairness and robustness, we investigate whether algorithms from robust ML can be used to improve the fairness of classifiers that are trained on biased data and tested on unbiased data. We apply Invariant Risk Minimization (IRM), a domain generalization algorithm that employs a causal discovery inspired method to find robust predictors, to the task of fairly predicting the toxicity of internet comments. We show that IRM achieves better out-of-distribution accuracy and fairness than Empirical Risk Minimization (ERM) methods, and analyze both the difficulties that arise when applying IRM in practice and the conditions under which IRM will likely be effective in this scenario. We hope that this work will inspire further studies of how robust machine learning methods relate to algorithmic fairness.
Exchanging Lessons Between Algorithmic Fairness and Domain Generalization
Creager, Elliot, Jacobsen, Jรถrn-Henrik, Zemel, Richard
Standard learning approaches are designed to perform well on average for the data distribution available at training time. Developing learning approaches that are not overly sensitive to the training distribution is central to research on domain- or out-of-distribution generalization, robust optimization and fairness. In this work we focus on links between research on domain generalization and algorithmic fairness -- where performance under a distinct but related test distributions is studied -- and show how the two fields can be mutually beneficial. While domain generalization methods typically rely on knowledge of disjoint "domains" or "environments", "sensitive" label information indicating which demographic groups are at risk of discrimination is often used in the fairness literature. Drawing inspiration from recent fairness approaches that improve worst-case performance without knowledge of sensitive groups, we propose a novel domain generalization method that handles the more realistic scenario where environment partitions are not provided. We then show theoretically and empirically how different partitioning schemes can lead to increased or decreased generalization performance, enabling us to outperform Invariant Risk Minimization with handcrafted environments in multiple cases. We also show how a re-interpretation of IRMv1 allows us for the first time to directly optimize a common fairness criterion, group-sufficiency, and thereby improve performance on a fair prediction task.
Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach
Mladenov, Martin, Creager, Elliot, Ben-Porat, Omer, Swersky, Kevin, Zemel, Richard, Boutilier, Craig
Most recommender systems (RS) research assumes that a user's utility can be maximized independently of the utility of the other agents (e.g., other users, content providers). In realistic settings, this is often not true---the dynamics of an RS ecosystem couple the long-term utility of all agents. In this work, we explore settings in which content providers cannot remain viable unless they receive a certain level of user engagement. We formulate the recommendation problem in this setting as one of equilibrium selection in the induced dynamical system, and show that it can be solved as an optimal constrained matching problem. Our model ensures the system reaches an equilibrium with maximal social welfare supported by a sufficiently diverse set of viable providers. We demonstrate that even in a simple, stylized dynamical RS model, the standard myopic approach to recommendation---always matching a user to the best provider---performs poorly. We develop several scalable techniques to solve the matching problem, and also draw connections to various notions of user regret and fairness, arguing that these outcomes are fairer in a utilitarian sense.
Counterfactual Data Augmentation using Locally Factored Dynamics
Pitis, Silviu, Creager, Elliot, Garg, Animesh
Many dynamic processes, including common scenarios in robotic control and reinforcement learning (RL), involve a set of interacting subprocesses. Though the subprocesses are not independent, their interactions are often sparse, and the dynamics at any given time step can often be decomposed into locally independent causal mechanisms. Such local causal structures can be leveraged to improve the sample efficiency of sequence prediction and off-policy reinforcement learning. We formalize this by introducing local causal models (LCMs), which are induced from a global causal model by conditioning on a subset of the state space. We propose an approach to inferring these structures given an object-oriented state representation, as well as a novel algorithm for model-free Counterfactual Data Augmentation (CoDA). CoDA uses local structures and an experience replay to generate counterfactual experiences that are causally valid in the global model. We find that CoDA significantly improves the performance of RL agents in locally factored tasks, including the batch-constrained and goal-conditioned settings.