Craswell, Nick
Initial Nugget Evaluation Results for the TREC 2024 RAG Track with the AutoNuggetizer Framework
Pradeep, Ronak, Thakur, Nandan, Upadhyay, Shivani, Campos, Daniel, Craswell, Nick, Lin, Jimmy
This report provides an initial look at partial results from the TREC 2024 Retrieval-Augmented Generation (RAG) Track. We have identified RAG evaluation as a barrier to continued progress in information access (and more broadly, natural language processing and artificial intelligence), and it is our hope that we can contribute to tackling the many challenges in this space. The central hypothesis we explore in this work is that the nugget evaluation methodology, originally developed for the TREC Question Answering Track in 2003, provides a solid foundation for evaluating RAG systems. As such, our efforts have focused on "refactoring" this methodology, specifically applying large language models to both automatically create nuggets and to automatically assign nuggets to system answers. We call this the AutoNuggetizer framework. Within the TREC setup, we are able to calibrate our fully automatic process against a manual process whereby nuggets are created by human assessors semi-manually and then assigned manually to system answers. Based on initial results across 21 topics from 45 runs, we observe a strong correlation between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation by human assessors. This suggests that our fully automatic evaluation process can be used to guide future iterations of RAG systems.
A Large-Scale Study of Relevance Assessments with Large Language Models: An Initial Look
Upadhyay, Shivani, Pradeep, Ronak, Thakur, Nandan, Campos, Daniel, Craswell, Nick, Soboroff, Ian, Dang, Hoa Trang, Lin, Jimmy
The application of large language models to provide relevance assessments presents exciting opportunities to advance information retrieval, natural language processing, and beyond, but to date many unknowns remain. This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed in situ: the "standard" fully manual process that NIST has implemented for decades and three different alternatives that take advantage of LLMs to different extents using the open-source UMBRELA tool. This setup allows us to correlate system rankings induced by the different approaches to characterize tradeoffs between cost and quality. We find that in terms of nDCG@20, nDCG@100, and Recall@100, system rankings induced by automatically generated relevance assessments from UMBRELA correlate highly with those induced by fully manual assessments across a diverse set of 77 runs from 19 teams. Our results suggest that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness. Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits. Overall, human assessors appear to be stricter than UMBRELA in applying relevance criteria. Our work validates the use of LLMs in academic TREC-style evaluations and provides the foundation for future studies.
Synthetic Test Collections for Retrieval Evaluation
Rahmani, Hossein A., Craswell, Nick, Yilmaz, Emine, Mitra, Bhaskar, Campos, Daniel
Test collections play a vital role in evaluation of information retrieval (IR) systems. Obtaining a diverse set of user queries for test collection construction can be challenging, and acquiring relevance judgments, which indicate the appropriateness of retrieved documents to a query, is often costly and resource-intensive. Generating synthetic datasets using Large Language Models (LLMs) has recently gained significant attention in various applications. In IR, while previous work exploited the capabilities of LLMs to generate synthetic queries or documents to augment training data and improve the performance of ranking models, using LLMs for constructing synthetic test collections is relatively unexplored. Previous studies demonstrate that LLMs have the potential to generate synthetic relevance judgments for use in the evaluation of IR systems. In this paper, we comprehensively investigate whether it is possible to use LLMs to construct fully synthetic test collections by generating not only synthetic judgments but also synthetic queries. In particular, we analyse whether it is possible to construct reliable synthetic test collections and the potential risks of bias such test collections may exhibit towards LLM-based models. Our experiments indicate that using LLMs it is possible to construct synthetic test collections that can reliably be used for retrieval evaluation.
Large language models can accurately predict searcher preferences
Thomas, Paul, Spielman, Seth, Craswell, Nick, Mitra, Bhaskar
Relevance labels, which indicate whether a search result is valuable to a searcher, are key to evaluating and optimising search systems. The best way to capture the true preferences of users is to ask them for their careful feedback on which results would be useful, but this approach does not scale to produce a large number of labels. Getting relevance labels at scale is usually done with third-party labellers, who judge on behalf of the user, but there is a risk of low-quality data if the labeller doesn't understand user needs. To improve quality, one standard approach is to study real users through interviews, user studies and direct feedback, find areas where labels are systematically disagreeing with users, then educate labellers about user needs through judging guidelines, training and monitoring. This paper introduces an alternate approach for improving label quality. It takes careful feedback from real users, which by definition is the highest-quality first-party gold data that can be derived, and develops an large language model prompt that agrees with that data. We present ideas and observations from deploying language models for large-scale relevance labelling at Bing, and illustrate with data from TREC. We have found large language models can be effective, with accuracy as good as human labellers and similar capability to pick the hardest queries, best runs, and best groups. Systematic changes to the prompts make a difference in accuracy, but so too do simple paraphrases. To measure agreement with real searchers needs high-quality ``gold'' labels, but with these we find that models produce better labels than third-party workers, for a fraction of the cost, and these labels let us train notably better rankers.
Zero-shot Clarifying Question Generation for Conversational Search
Wang, Zhenduo, Tu, Yuancheng, Rosset, Corby, Craswell, Nick, Wu, Ming, Ai, Qingyao
A long-standing challenge for search and conversational assistants is query intention detection in ambiguous queries. Asking clarifying questions in conversational search has been widely studied and considered an effective solution to resolve query ambiguity. Existing work have explored various approaches for clarifying question ranking and generation. However, due to the lack of real conversational search data, they have to use artificial datasets for training, which limits their generalizability to real-world search scenarios. As a result, the industry has shown reluctance to implement them in reality, further suspending the availability of real conversational search interaction data. The above dilemma can be formulated as a cold start problem of clarifying question generation and conversational search in general. Furthermore, even if we do have large-scale conversational logs, it is not realistic to gather training data that can comprehensively cover all possible queries and topics in open-domain search scenarios. The risk of fitting bias when training a clarifying question retrieval/generation model on incomprehensive dataset is thus another important challenge. In this work, we innovatively explore generating clarifying questions in a zero-shot setting to overcome the cold start problem and we propose a constrained clarifying question generation system which uses both question templates and query facets to guide the effective and precise question generation. The experiment results show that our method outperforms existing state-of-the-art zero-shot baselines by a large margin. Human annotations to our model outputs also indicate our method generates 25.2\% more natural questions, 18.1\% more useful questions, 6.1\% less unnatural and 4\% less useless questions.
Less is Less: When Are Snippets Insufficient for Human vs Machine Relevance Estimation?
Kazai, Gabriella, Mitra, Bhaskar, Dong, Anlei, Craswell, Nick, Yang, Linjun
Traditional information retrieval (IR) ranking models process the full text of documents. Newer models based on Transformers, however, would incur a high computational cost when processing long texts, so typically use only snippets from the document instead. The model's input based on a document's URL, title, and snippet (UTS) is akin to the summaries that appear on a search engine results page (SERP) to help searchers decide which result to click. This raises questions about when such summaries are sufficient for relevance estimation by the ranking model or the human assessor, and whether humans and machines benefit from the document's full text in similar ways. To answer these questions, we study human and neural model based relevance assessments on 12k query-documents sampled from Bing's search logs. We compare changes in the relevance assessments when only the document summaries and when the full text is also exposed to assessors, studying a range of query and document properties, e.g., query type, snippet length. Our findings show that the full text is beneficial for humans and a BERT model for similar query and document types, e.g., tail, long queries. A closer look, however, reveals that humans and machines respond to the additional input in very different ways. Adding the full text can also hurt the ranker's performance, e.g., for navigational queries.
MS MARCO: Benchmarking Ranking Models in the Large-Data Regime
Craswell, Nick, Mitra, Bhaskar, Yilmaz, Emine, Campos, Daniel, Lin, Jimmy
Evaluation efforts such as TREC, CLEF, NTCIR and FIRE, alongside public leaderboard such as MS MARCO, are intended to encourage research and track our progress, addressing big questions in our field. However, the goal is not simply to identify which run is "best", achieving the top score. The goal is to move the field forward by developing new robust techniques, that work in many different settings, and are adopted in research and practice. This paper uses the MS MARCO and TREC Deep Learning Track as our case study, comparing it to the case of TREC ad hoc ranking in the 1990s. We show how the design of the evaluation effort can encourage or discourage certain outcomes, and raising questions about internal and external validity of results. We provide some analysis of certain pitfalls, and a statement of best practices for avoiding such pitfalls. We summarize the progress of the effort so far, and describe our desired end state of "robust usefulness", along with steps that might be required to get us there.
Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence
Mitra, Bhaskar, Hofstatter, Sebastian, Zamani, Hamed, Craswell, Nick
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark -- and can be considered to be an efficient (but slightly less effective) alternative to other Transformer-based architectures that employ (i) large-scale pretraining (high training cost), (ii) joint encoding of query and document (high inference cost), and (iii) larger number of Transformer layers (both high training and high inference costs). Since, a variant of the TK model -- called TKL -- has been developed that incorporates local self-attention to efficiently process longer input sequences in the context of document ranking. In this work, we propose a novel Conformer layer as an alternative approach to scale TK to longer input sequences. Furthermore, we incorporate query term independence and explicit term matching to extend the model to the full retrieval setting. We benchmark our models under the strictly blind evaluation setting of the TREC 2020 Deep Learning track and find that our proposed architecture changes lead to improved retrieval quality over TKL. Our best model also outperforms all non-neural runs ("trad") and two-thirds of the pretrained Transformer-based runs ("nnlm") on NDCG@10.
TREC Deep Learning Track: Reusable Test Collections in the Large Data Regime
Craswell, Nick, Mitra, Bhaskar, Yilmaz, Emine, Campos, Daniel, Voorhees, Ellen M., Soboroff, Ian
The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This paper supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.
Overview of the TREC 2020 deep learning track
Craswell, Nick, Mitra, Bhaskar, Yilmaz, Emine, Campos, Daniel
This is the second year of the TREC Deep Learning Track, with the goal of studying ad hoc ranking in the large training data regime. We again have a document retrieval task and a passage retrieval task, each with hundreds of thousands of human-labeled training queries. We evaluate using single-shot TREC-style evaluation, to give us a picture of which ranking methods work best when large data is available, with much more comprehensive relevance labeling on the small number of test queries. This year we have further evidence that rankers with BERT-style pretraining outperform other rankers in the large data regime.