Goto

Collaborating Authors

 Craddock, Ian


Optimising TinyML with Quantization and Distillation of Transformer and Mamba Models for Indoor Localisation on Edge Devices

arXiv.org Artificial Intelligence

This paper proposes small and efficient machine learning models (TinyML) for resource-constrained edge devices, specifically for on-device indoor localisation. Typical approaches for indoor localisation rely on centralised remote processing of data transmitted from lower powered devices such as wearables. However, there are several benefits for moving this to the edge device itself, including increased battery life, enhanced privacy, reduced latency and lowered operational costs, all of which are key for common applications such as health monitoring. The work focuses on model compression techniques, including quantization and knowledge distillation, to significantly reduce the model size while maintaining high predictive performance. We base our work on a large state-of-the-art transformer-based model and seek to deploy it within low-power MCUs. We also propose a state-space-based architecture using Mamba as a more compact alternative to the transformer. Our results show that the quantized transformer model performs well within a 64 KB RAM constraint, achieving an effective balance between model size and localisation precision. Additionally, the compact Mamba model has strong performance under even tighter constraints, such as a 32 KB of RAM, without the need for model compression, making it a viable option for more resource-limited environments. We demonstrate that, through our framework, it is feasible to deploy advanced indoor localisation models onto low-power MCUs with restricted memory limitations. The application of these TinyML models in healthcare has the potential to revolutionize patient monitoring by providing accurate, real-time location data while minimizing power consumption, increasing data privacy, improving latency and reducing infrastructure costs.


Transfer Learning of RSSI to Improve Indoor Localisation Performance

arXiv.org Artificial Intelligence

With the growing demand for health monitoring systems, in-home localisation is essential for tracking patient conditions. The unique spatial characteristics of each house required annotated data for Bluetooth Low Energy (BLE) Received Signal Strength Indicator (RSSI)-based monitoring system. However, collecting annotated training data is time-consuming, particularly for patients with limited health conditions. To address this, we propose Conditional Generative Adversarial Networks (ConGAN)-based augmentation, combined with our transfer learning framework (T-ConGAN), to enable the transfer of generic RSSI information between different homes, even when data is collected using different experimental protocols. This enhances the performance and scalability of such intelligent systems by reducing the need for annotation in each home. We are the first to demonstrate that BLE RSSI data can be shared across different homes, and that shared information can improve the indoor localisation performance. Our T-ConGAN enhances the macro F1 score of room-level indoor localisation by up to 12.2%, with a remarkable 51% improvement in challenging areas such as stairways or outside spaces. This state-of-the-art RSSI augmentation model significantly enhances the robustness of in-home health monitoring systems.


Multimodal Indoor Localisation in Parkinson's Disease for Detecting Medication Use: Observational Pilot Study in a Free-Living Setting

arXiv.org Artificial Intelligence

Parkinson's disease (PD) is a slowly progressive, debilitating neurodegenerative disease which causes motor symptoms including gait dysfunction. Motor fluctuations are alterations between periods with a positive response to levodopa therapy ("on") and periods marked by re-emergency of PD symptoms ("off") as the response to medication wears off. These fluctuations often affect gait speed and they increase in their disabling impact as PD progresses. To improve the effectiveness of current indoor localisation methods, a transformer-based approach utilising dual modalities which provide complementary views of movement, Received Signal Strength Indicator (RSSI) and accelerometer data from wearable devices, is proposed. A sub-objective aims to evaluate whether indoor localisation, including its in-home gait speed features (i.e. the time taken to walk between rooms), could be used to evaluate motor fluctuations by detecting whether the person with PD is taking levodopa medications or withholding them. To properly evaluate our proposed method, we use a free-living dataset where the movements and mobility are greatly varied and unstructured as expected in real-world conditions. 24 participants lived in pairs (consisting of one person with PD, one control) for five days in a smart home with various sensors. Our evaluation on the resulting dataset demonstrates that our proposed network outperforms other methods for indoor localisation. The sub-objective evaluation shows that precise room-level localisation predictions, transformed into in-home gait speed features, produce accurate predictions on whether the PD participant is taking or withholding their medications.


When the Ground Truth is not True: Modelling Human Biases in Temporal Annotations

arXiv.org Artificial Intelligence

In supervised learning, low quality annotations lead to poorly performing classification and detection models, while also rendering evaluation unreliable. This is particularly apparent on temporal data, where annotation quality is affected by multiple factors. For example, in the post-hoc self-reporting of daily activities, cognitive biases are one of the most common ingredients. In particular, reporting the start and duration of an activity after its finalisation may incorporate biases introduced by personal time perceptions, as well as the imprecision and lack of granularity due to time rounding. Here we propose a method to model human biases on temporal annotations and argue for the use of soft labels. Experimental results in synthetic data show that soft labels provide a better approximation of the ground truth for several metrics. We showcase the method on a real dataset of daily activities.


Detecting Signatures of Early-stage Dementia with Behavioural Models Derived from Sensor Data

arXiv.org Machine Learning

There is a pressing need to automatically understand the state and progression of chronic neurological diseases such as dementia. The emergence of state-of-the-art sensing platforms offers unprecedented opportunities for indirect and automatic evaluation of disease state through the lens of behavioural monitoring. This paper specifically seeks to characterise behavioural signatures of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in the \textit{early} stages of the disease. We introduce bespoke behavioural models and analyses of key symptoms and deploy these on a novel dataset of longitudinal sensor data from persons with MCI and AD. We present preliminary findings that show the relationship between levels of sleep quality and wandering can be subtly different between patients in the early stages of dementia and healthy cohabiting controls.


N2D:(Not Too) Deep Clustering via Clustering the Local Manifold of an Autoencoded Embedding

arXiv.org Machine Learning

Deep clustering has increasingly been demonstrating superiority over conventional shallow clustering algorithms. Deep clustering algorithms usually combine representation learning with deep neural networks to achieve this performance, typically optimizing a clustering and non-clustering loss. In such cases, an autoencoder is typically connected with a clustering network, and the final clustering is jointly learned by both the autoencoder and clustering network. Instead, we propose to learn an autoencoded embedding and then search this further for the underlying manifold. For simplicity, we then cluster this with a shallow clustering algorithm, rather than a deeper network. We study a number of local and global manifold learning methods on both the raw data and autoencoded embedding, concluding that UMAP in our framework is best able to find the most clusterable manifold in the embedding, suggesting local manifold learning on an autoencoded embedding is effective for discovering higher quality discovering clusters. We quantitatively show across a range of image and time-series datasets that our method has competitive performance against the latest deep clustering algorithms, including out-performing current state-of-the-art on several. We postulate that these results show a promising research direction for deep clustering.


Probabilistic Sensor Fusion for Ambient Assisted Living

arXiv.org Machine Learning

There is a widely-accepted need to revise current forms of health-care provision, with particular interest in sensing systems in the home. Given a multiple-modality sensor platform with heterogeneous network connectivity, as is under development in the Sensor Platform for HEalthcare in Residential Environment (SPHERE) Interdisciplinary Research Collaboration (IRC), we face specific challenges relating to the fusion of the heterogeneous sensor modalities. We introduce Bayesian models for sensor fusion, which aims to address the challenges of fusion of heterogeneous sensor modalities. Using this approach we are able to identify the modalities that have most utility for each particular activity, and simultaneously identify which features within that activity are most relevant for a given activity. We further show how the two separate tasks of location prediction and activity recognition can be fused into a single model, which allows for simultaneous learning an prediction for both tasks. We analyse the performance of this model on data collected in the SPHERE house, and show its utility. We also compare against some benchmark models which do not have the full structure,and show how the proposed model compares favourably to these methods