Cowen-Rivers, Alexander I.
HEBO: Pushing The Limits of Sample-Efficient Hyper-parameter Optimisation
Cowen-Rivers, Alexander I., Lyu, Wenlong, Tutunov, Rasul, Wang, Zhi, Grosnit, Antoine, Griffiths, Ryan Rhys, Maraval, Alexandre Max, Jianye, Hao, Wang, Jun, Peters, Jan, Bou-Ammar, Haitham
Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO's empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multiobjective acquisition ensembles with Pareto front solutions improve queried configurations, and robust acquisition maximisers afford empirical advantages relative to their non-robust counterparts. We hope these findings may serve as guiding principles for practitioners of Bayesian optimisation.
SAUTE RL: Almost Surely Safe Reinforcement Learning Using State Augmentation
Sootla, Aivar, Cowen-Rivers, Alexander I., Jafferjee, Taher, Wang, Ziyan, Mguni, David, Wang, Jun, Bou-Ammar, Haitham
Satisfying safety constraints almost surely (or with probability one) can be critical for deployment of Reinforcement Learning (RL) in real-life applications. For example, plane landing and take-off should ideally occur with probability one. We address the problem by introducing Safety Augmented (Saute) Markov Decision Processes (MDPs), where the safety constraints are eliminated by augmenting them into the state-space and reshaping the objective. We show that Saute MDP satisfies the Bellman equation and moves us closer to solving Safe RL with constraints satisfied almost surely. We argue that Saute MDP allows to view Safe RL problem from a different perspective enabling new features. For instance, our approach has a plug-and-play nature, i.e., any RL algorithm can be "sauteed". Additionally, state augmentation allows for policy generalization across safety constraints. We finally show that Saute RL algorithms can outperform their state-of-the-art counterparts when constraint satisfaction is of high importance.
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Grosnit, Antoine, Cowen-Rivers, Alexander I., Tutunov, Rasul, Griffiths, Ryan-Rhys, Wang, Jun, Bou-Ammar, Haitham
Bayesian optimisation presents a sample-efficient methodology for global optimisation. Within this framework, a crucial performance-determining subroutine is the maximisation of the acquisition function, a task complicated by the fact that acquisition functions tend to be non-convex and thus nontrivial to optimise. In this paper, we undertake a comprehensive empirical study of approaches to maximise the acquisition function. Additionally, by deriving novel, yet mathematically equivalent, compositional forms for popular acquisition functions, we recast the maximisation task as a compositional optimisation problem, allowing us to benefit from the extensive literature in this field. We highlight the empirical advantages of the compositional approach to acquisition function maximisation across 3958 individual experiments comprising synthetic optimisation tasks as well as tasks from Bayesmark. Given the generality of the acquisition function maximisation subroutine, we posit that the adoption of compositional optimisers has the potential to yield performance improvements across all domains in which Bayesian optimisation is currently being applied.
SAMBA: Safe Model-Based & Active Reinforcement Learning
Cowen-Rivers, Alexander I., Palenicek, Daniel, Moens, Vincent, Abdullah, Mohammed, Sootla, Aivar, Wang, Jun, Ammar, Haitham
In this paper, we propose SAMBA, a novel framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics. Our method builds upon PILCO to enable active exploration using novel(semi-)metrics for out-of-sample Gaussian process evaluation optimised through a multi-objective problem that supports conditional-value-at-risk constraints. We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations. Our results show orders of magnitude reductions in samples and violations compared to state-of-the-art methods. Lastly, we provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
Neural Variational Inference For Estimating Uncertainty in Knowledge Graph Embeddings
Cowen-Rivers, Alexander I., Minervini, Pasquale, Rocktaschel, Tim, Bovsnjak, Matko, Riedel, Sebastian, Wang, Jun
Recent advances in Neural Variational Inference allowed for a renaissance in latent variable models in a variety of domains involving high-dimensional data. While traditional variational methods derive an analytical approximation for the intractable distribution over the latent variables, here we construct an inference network conditioned on the symbolic representation of entities and relation types in the Knowledge Graph, to provide the variational distributions. The new framework results in a highly-scalable method. Under a Bernoulli sampling framework, we provide an alternative justification for commonly used techniques in large-scale stochastic variational inference, which drastically reduce training time at a cost of an additional approximation to the variational lower bound. We introduce two models from this highly scalable probabilistic framework, namely the Latent Information and Latent Fact models, for reasoning over knowledge graph-based representations. Our Latent Information and Latent Fact models improve upon baseline performance under certain conditions. We use the learnt embedding variance to estimate predictive uncertainty during link prediction, and discuss the quality of these learnt uncertainty estimates. Our source code and datasets are publicly available online at https://github.com/alexanderimanicowenrivers/Neural-Variational-Knowledge-Graphs.