Coustaty, Mickaël
Lazy-k: Decoding for Constrained Token Classification
Hemmer, Arthur, Coustaty, Mickaël, Bartolo, Nicola, Brachat, Jérôme, Ogier, Jean-Marc
We explore the possibility of improving probabilistic models in structured prediction. Specifically, we combine the models with constrained decoding approaches in the context of token classification for information extraction. The decoding methods search for constraint-satisfying label-assignments while maximizing the total probability. To do this, we evaluate several existing approaches, as well as propose a novel decoding method called Lazy-$k$. Our findings demonstrate that constrained decoding approaches can significantly improve the models' performances, especially when using smaller models. The Lazy-$k$ approach allows for more flexibility between decoding time and accuracy. The code for using Lazy-$k$ decoding can be found here: https://github.com/ArthurDevNL/lazyk.
Document Understanding Dataset and Evaluation (DUDE)
Van Landeghem, Jordy, Tito, Rubén, Borchmann, Łukasz, Pietruszka, Michał, Józiak, Paweł, Powalski, Rafał, Jurkiewicz, Dawid, Coustaty, Mickaël, Ackaert, Bertrand, Valveny, Ernest, Blaschko, Matthew, Moens, Sien, Stanisławek, Tomasz
We call on the Document AI (DocAI) community to reevaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins, and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.
Estimating Post-OCR Denoising Complexity on Numerical Texts
Hemmer, Arthur, Brachat, Jérôme, Coustaty, Mickaël, Ogier, Jean-Marc
Post-OCR processing has significantly improved over the past few years. However, these have been primarily beneficial for texts consisting of natural, alphabetical words, as opposed to documents of numerical nature such as invoices, payslips, medical certificates, etc. To evaluate the OCR post-processing difficulty of these datasets, we propose a method to estimate the denoising complexity of a text and evaluate it on several datasets of varying nature, and show that texts of numerical nature have a significant disadvantage. We evaluate the estimated complexity ranking with respect to the error rates of modern-day denoising approaches to show the validity of our estimator.
DocILE Benchmark for Document Information Localization and Extraction
Šimsa, Štěpán, Šulc, Milan, Uřičář, Michal, Patel, Yash, Hamdi, Ahmed, Kocián, Matěj, Skalický, Matyáš, Matas, Jiří, Doucet, Antoine, Coustaty, Mickaël, Karatzas, Dimosthenis
This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain-and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero-and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETRbased Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile. Keywords: Document AI Information Extraction Line Item Recognition Business Documents Intelligent Document Processing