Not enough data to create a plot.
Try a different view from the menu above.
Courty, Nicolas
Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds
Bonet, Clément, Drumetz, Lucas, Courty, Nicolas
While many Machine Learning methods were developed or transposed on Riemannian manifolds to tackle data with known non Euclidean geometry, Optimal Transport (OT) methods on such spaces have not received much attention. The main OT tool on these spaces is the Wasserstein distance which suffers from a heavy computational burden. On Euclidean spaces, a popular alternative is the Sliced-Wasserstein distance, which leverages a closed-form solution of the Wasserstein distance in one dimension, but which is not readily available on manifolds. In this work, we derive general constructions of Sliced-Wasserstein distances on Cartan-Hadamard manifolds, Riemannian manifolds with non-positive curvature, which include among others Hyperbolic spaces or the space of Symmetric Positive Definite matrices. Then, we propose different applications. Additionally, we derive non-parametric schemes to minimize these new distances by approximating their Wasserstein gradient flows.
Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein Projection
Van Assel, Hugues, Vincent-Cuaz, Cédric, Courty, Nicolas, Flamary, Rémi, Frossard, Pascal, Vayer, Titouan
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets. Traditionally, this involves using dimensionality reduction methods to project data onto interpretable spaces or organizing points into meaningful clusters. In practice, these methods are used sequentially, without guaranteeing that the clustering aligns well with the conducted dimensionality reduction. In this work, we offer a fresh perspective: that of distributions. Leveraging tools from optimal transport, particularly the Gromov-Wasserstein distance, we unify clustering and dimensionality reduction into a single framework called distributional reduction. This allows us to jointly address clustering and dimensionality reduction with a single optimization problem. Through comprehensive experiments, we highlight the versatility and interpretability of our method and show that it outperforms existing approaches across a variety of image and genomics datasets.
Fast Optimal Transport through Sliced Wasserstein Generalized Geodesics
Mahey, Guillaume, Chapel, Laetitia, Gasso, Gilles, Bonet, Clément, Courty, Nicolas
Wasserstein distance (WD) and the associated optimal transport plan have been proven useful in many applications where probability measures are at stake. In this paper, we propose a new proxy of the squared WD, coined min-SWGG, that is based on the transport map induced by an optimal one-dimensional projection of the two input distributions. We draw connections between min-SWGG and Wasserstein generalized geodesics in which the pivot measure is supported on a line. We notably provide a new closed form for the exact Wasserstein distance in the particular case of one of the distributions supported on a line allowing us to derive a fast computational scheme that is amenable to gradient descent optimization. We show that min-SWGG is an upper bound of WD and that it has a complexity similar to as Sliced-Wasserstein, with the additional feature of providing an associated transport plan. We also investigate some theoretical properties such as metricity, weak convergence, computational and topological properties. Empirical evidences support the benefits of min-SWGG in various contexts, from gradient flows, shape matching and image colorization, among others.
SNEkhorn: Dimension Reduction with Symmetric Entropic Affinities
Van Assel, Hugues, Vayer, Titouan, Flamary, Rémi, Courty, Nicolas
Many approaches in machine learning rely on a weighted graph to encode the similarities between samples in a dataset. Entropic affinities (EAs), which are notably used in the popular Dimensionality Reduction (DR) algorithm t-SNE, are particular instances of such graphs. To ensure robustness to heterogeneous sampling densities, EAs assign a kernel bandwidth parameter to every sample in such a way that the entropy of each row in the affinity matrix is kept constant at a specific value, whose exponential is known as perplexity. EAs are inherently asymmetric and row-wise stochastic, but they are used in DR approaches after undergoing heuristic symmetrization methods that violate both the row-wise constant entropy and stochasticity properties. In this work, we uncover a novel characterization of EA as an optimal transport problem, allowing a natural symmetrization that can be computed efficiently using dual ascent. The corresponding novel affinity matrix derives advantages from symmetric doubly stochastic normalization in terms of clustering performance, while also effectively controlling the entropy of each row thus making it particularly robust to varying noise levels. Following, we present a new DR algorithm, SNEkhorn, that leverages this new affinity matrix. We show its clear superiority to state-of-the-art approaches with several indicators on both synthetic and real-world datasets.
Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein
Van Assel, Hugues, Vincent-Cuaz, Cédric, Vayer, Titouan, Flamary, Rémi, Courty, Nicolas
We present a versatile adaptation of existing dimensionality reduction (DR) objectives, enabling the simultaneous reduction of both sample and feature sizes. Correspondances between input and embedding samples are computed through a semi-relaxed Gromov-Wasserstein optimal transport (OT) problem. When the embedding sample size matches that of the input, our model recovers classical popular DR models. When the embedding's dimensionality is unconstrained, we show that the OT plan delivers a competitive hard clustering. We emphasize the importance of intermediate stages that blend DR and clustering for summarizing real data and apply our method to visualize datasets of images.
Match-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal Alignment
Painblanc, François, Chapel, Laetitia, Courty, Nicolas, Friguet, Chloé, Pelletier, Charlotte, Tavenard, Romain
While large volumes of unlabeled data are usually available, associated labels are often scarce. The unsupervised domain adaptation problem aims at exploiting labels from a source domain to classify data from a related, yet different, target domain. When time series are at stake, new difficulties arise as temporal shifts may appear in addition to the standard feature distribution shift. In this paper, we introduce the Match-And-Deform (MAD) approach that aims at finding correspondences between the source and target time series while allowing temporal distortions. The associated optimization problem simultaneously aligns the series thanks to an optimal transport loss and the time stamps through dynamic time warping. When embedded into a deep neural network, MAD helps learning new representations of time series that both align the domains and maximize the discriminative power of the network. Empirical studies on benchmark datasets and remote sensing data demonstrate that MAD makes meaningful sample-to-sample pairing and time shift estimation, reaching similar or better classification performance than state-of-the-art deep time series domain adaptation strategies.
Aligning individual brains with Fused Unbalanced Gromov-Wasserstein
Thual, Alexis, Tran, Huy, Zemskova, Tatiana, Courty, Nicolas, Flamary, Rémi, Dehaene, Stanislas, Thirion, Bertrand
Individual brains vary in both anatomy and functional organization, even within a given species. Inter-individual variability is a major impediment when trying to draw generalizable conclusions from neuroimaging data collected on groups of subjects. Current co-registration procedures rely on limited data, and thus lead to very coarse inter-subject alignments. In this work, we present a novel method for inter-subject alignment based on Optimal Transport, denoted as Fused Unbalanced Gromov Wasserstein (FUGW). The method aligns cortical surfaces based on the similarity of their functional signatures in response to a variety of stimulation settings, while penalizing large deformations of individual topographic organization. We demonstrate that FUGW is well-suited for whole-brain landmark-free alignment. The unbalanced feature allows to deal with the fact that functional areas vary in size across subjects. Our results show that FUGW alignment significantly increases between-subject correlation of activity for independent functional data, and leads to more precise mapping at the group level.
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Bonet, Clément, Chapel, Laetitia, Drumetz, Lucas, Courty, Nicolas
It has been shown beneficial for many types of data which present an underlying hierarchical structure to be embedded in hyperbolic spaces. Consequently, many tools of machine learning were extended to such spaces, but only few discrepancies to compare probability distributions defined over those spaces exist. Among the possible candidates, optimal transport distances are well defined on such Riemannian manifolds and enjoy strong theoretical properties, but suffer from high computational cost. On Euclidean spaces, sliced-Wasserstein distances, which leverage a closed-form of the Wasserstein distance in one dimension, are more computationally efficient, but are not readily available on hyperbolic spaces. In this work, we propose to derive novel hyperbolic sliced-Wasserstein discrepancies. These constructions use projections on the underlying geodesics either along horospheres or geodesics. We study and compare them on different tasks where hyperbolic representations are relevant, such as sampling or image classification.
Unbalanced Optimal Transport meets Sliced-Wasserstein
Séjourné, Thibault, Bonet, Clément, Fatras, Kilian, Nadjahi, Kimia, Courty, Nicolas
Optimal transport (OT) has emerged as a powerful framework to compare probability measures, a fundamental task in many statistical and machine learning problems. Substantial advances have been made over the last decade in designing OT variants which are either computationally and statistically more efficient, or more robust to the measures and datasets to compare. Among them, sliced OT distances have been extensively used to mitigate optimal transport's cubic algorithmic complexity and curse of dimensionality. In parallel, unbalanced OT was designed to allow comparisons of more general positive measures, while being more robust to outliers. In this paper, we propose to combine these two concepts, namely slicing and unbalanced OT, to develop a general framework for efficiently comparing positive measures. We propose two new loss functions based on the idea of slicing unbalanced OT, and study their induced topology and statistical properties. We then develop a fast Frank-Wolfe-type algorithm to compute these loss functions, and show that the resulting methodology is modular as it encompasses and extends prior related work. We finally conduct an empirical analysis of our loss functions and methodology on both synthetic and real datasets, to illustrate their relevance and applicability.
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals
Bonet, Clément, Malézieux, Benoît, Rakotomamonjy, Alain, Drumetz, Lucas, Moreau, Thomas, Kowalski, Matthieu, Courty, Nicolas
When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications.