Goto

Collaborating Authors

 Cosma, Georgina


Temporal Patterns of Multiple Long-Term Conditions in Individuals with Intellectual Disability Living in Wales: An Unsupervised Clustering Approach to Disease Trajectories

arXiv.org Artificial Intelligence

Identifying and understanding the co-occurrence of multiple long-term conditions (MLTC) in individuals with intellectual disabilities (ID) is vital for effective healthcare management. These individuals often face earlier onset and higher prevalence of MLTCs, yet specific co-occurrence patterns remain unexplored. This study applies an unsupervised approach to characterise MLTC clusters based on shared disease trajectories using electronic health records (EHRs) from 13069 individuals with ID in Wales (2000-2021). Disease associations and temporal directionality were assessed, followed by spectral clustering to group shared trajectories. The population consisted of 52.3% males and 47.7% females, with an average of 4.5 conditions per patient. Males under 45 formed a single cluster dominated by neurological conditions (32.4%), while males above 45 had three clusters, the largest characterised circulatory (51.8%). Females under 45 formed one cluster with digestive conditions (24.6%) as most prevalent, while those aged 45 and older showed two clusters: one dominated by circulatory (34.1%), and the other by digestive (25.9%) and musculoskeletal (21.9%) system conditions. Mental illness, epilepsy, and reflux were common across groups. These clusters offer insights into disease progression in individuals with ID, informing targeted interventions and personalised healthcare strategies.


Neural Corrective Machine Unranking

arXiv.org Artificial Intelligence

Machine unlearning in neural information retrieval (IR) systems requires removing specific data whilst maintaining model performance. Applying existing machine unlearning methods to IR may compromise retrieval effectiveness or inadvertently expose unlearning actions due to the removal of particular items from the retrieved results presented to users. We formalise corrective unranking, which extends machine unlearning in (neural) IR context by integrating substitute documents to preserve ranking integrity, and propose a novel teacher-student framework, Corrective unRanking Distillation (CuRD), for this task. CuRD (1) facilitates forgetting by adjusting the (trained) neural IR model such that its output relevance scores of to-be-forgotten samples mimic those of low-ranking, non-retrievable samples; (2) enables correction by fine-tuning the relevance scores for the substitute samples to match those of corresponding to-be-forgotten samples closely; (3) seeks to preserve performance on samples that are not targeted for forgetting. We evaluate CuRD on four neural IR models (BERTcat, BERTdot, ColBERT, PARADE) using MS MARCO and TREC CAR datasets. Experiments with forget set sizes from 1 % and 20 % of the training dataset demonstrate that CuRD outperforms seven state-of-the-art baselines in terms of forgetting and correction while maintaining model retention and generalisation capabilities.


Equitable Length of Stay Prediction for Patients with Learning Disabilities and Multiple Long-term Conditions Using Machine Learning

arXiv.org Artificial Intelligence

People with learning disabilities have a higher mortality rate and premature deaths compared to the general public, as reported in published research in the UK and other countries. This study analyses hospitalisations of 9,618 patients identified with learning disabilities and long-term conditions for the population of Wales using electronic health record (EHR) data sources from the SAIL Databank. We describe the demographic characteristics, prevalence of long-term conditions, medication history, hospital visits, and lifestyle history for our study cohort, and apply machine learning models to predict the length of hospital stays for this cohort. The random forest (RF) model achieved an Area Under the Curve (AUC) of 0.759 (males) and 0.756 (females), a false negative rate of 0.224 (males) and 0.229 (females), and a balanced accuracy of 0.690 (males) and 0.689 (females). After examining model performance across ethnic groups, two bias mitigation algorithms (threshold optimization and the reductions algorithm using an exponentiated gradient) were applied to minimise performance discrepancies. The threshold optimizer algorithm outperformed the reductions algorithm, achieving lower ranges in false positive rate and balanced accuracy for the male cohort across the ethnic groups. This study demonstrates the potential of applying machine learning models with effective bias mitigation approaches on EHR data sources to enable equitable prediction of hospital stays by addressing data imbalances across groups.


Unveiling Disparities in Maternity Care: A Topic Modelling Approach to Analysing Maternity Incident Investigation Reports

arXiv.org Artificial Intelligence

This study applies Natural Language Processing techniques, including Latent Dirichlet Allocation, to analyse anonymised maternity incident investigation reports from the Healthcare Safety Investigation Branch. The reports underwent preprocessing, annotation using the Safety Intelligence Research taxonomy, and topic modelling to uncover prevalent topics and detect differences in maternity care across ethnic groups. A combination of offline and online methods was utilised to ensure data protection whilst enabling advanced analysis, with offline processing for sensitive data and online processing for non-sensitive data using the `Claude 3 Opus' language model. Interactive topic analysis and semantic network visualisation were employed to extract and display thematic topics and visualise semantic relationships among keywords. The analysis revealed disparities in care among different ethnic groups, with distinct focus areas for the Black, Asian, and White British ethnic groups. The study demonstrates the effectiveness of topic modelling and NLP techniques in analysing maternity incident investigation reports and highlighting disparities in care. The findings emphasise the crucial role of advanced data analysis in improving maternity care quality and equity.


Intelligent Multi-Document Summarisation for Extracting Insights on Racial Inequalities from Maternity Incident Investigation Reports

arXiv.org Artificial Intelligence

In healthcare, thousands of safety incidents occur every year, but learning from these incidents is not effectively aggregated. Analysing incident reports using AI could uncover critical insights to prevent harm by identifying recurring patterns and contributing factors. To aggregate and extract valuable information, natural language processing (NLP) and machine learning techniques can be employed to summarise and mine unstructured data, potentially surfacing systemic issues and priority areas for improvement. This paper presents I-SIRch:CS, a framework designed to facilitate the aggregation and analysis of safety incident reports while ensuring traceability throughout the process. The framework integrates concept annotation using the Safety Intelligence Research (SIRch) taxonomy with clustering, summarisation, and analysis capabilities. Utilising a dataset of 188 anonymised maternity investigation reports annotated with 27 SIRch human factors concepts, I-SIRch:CS groups the annotated sentences into clusters using sentence embeddings and k-means clustering, maintaining traceability via file and sentence IDs. Summaries are generated for each cluster using offline state-of-the-art abstractive summarisation models (BART, DistilBART, T5), which are evaluated and compared using metrics assessing summary quality attributes. The generated summaries are linked back to the original file and sentence IDs, ensuring traceability and allowing for verification of the summarised information. Results demonstrate BART's strengths in creating informative and concise summaries.


I-SIRch: AI-Powered Concept Annotation Tool For Equitable Extraction And Analysis Of Safety Insights From Maternity Investigations

arXiv.org Artificial Intelligence

Maternity care is a complex system involving treatments and interactions between patients, providers, and the care environment. To improve patient safety and outcomes, understanding the human factors (e.g. individuals decisions, local facilities) influencing healthcare delivery is crucial. However, most current tools for analysing healthcare data focus only on biomedical concepts (e.g. health conditions, procedures and tests), overlooking the importance of human factors. We developed a new approach called I-SIRch, using artificial intelligence to automatically identify and label human factors concepts in maternity healthcare investigation reports describing adverse maternity incidents produced by England's Healthcare Safety Investigation Branch (HSIB). These incident investigation reports aim to identify opportunities for learning and improving maternal safety across the entire healthcare system. I-SIRch was trained using real data and tested on both real and simulated data to evaluate its performance in identifying human factors concepts. When applied to real reports, the model achieved a high level of accuracy, correctly identifying relevant concepts in 90\% of the sentences from 97 reports. Applying I-SIRch to analyse these reports revealed that certain human factors disproportionately affected mothers from different ethnic groups. Our work demonstrates the potential of using automated tools to identify human factors concepts in maternity incident investigation reports, rather than focusing solely on biomedical concepts. This approach opens up new possibilities for understanding the complex interplay between social, technical, and organisational factors influencing maternal safety and population health outcomes. By taking a more comprehensive view of maternal healthcare delivery, we can develop targeted interventions to address disparities and improve maternal outcomes.


Morphological Image Analysis and Feature Extraction for Reasoning with AI-based Defect Detection and Classification Models

arXiv.org Artificial Intelligence

As the use of artificial intelligent (AI) models becomes more prevalent in industries such as engineering and manufacturing, it is essential that these models provide transparent reasoning behind their predictions. This paper proposes the AI-Reasoner, which extracts the morphological characteristics of defects (DefChars) from images and utilises decision trees to reason with the DefChar values. Thereafter, the AI-Reasoner exports visualisations (i.e. charts) and textual explanations to provide insights into outputs made by masked-based defect detection and classification models. It also provides effective mitigation strategies to enhance data pre-processing and overall model performance. The AI-Reasoner was tested on explaining the outputs of an IE Mask R-CNN model using a set of 366 images containing defects. The results demonstrated its effectiveness in explaining the IE Mask R-CNN model's predictions. Overall, the proposed AI-Reasoner provides a solution for improving the performance of AI models in industrial applications that require defect analysis.


ForestMonkey: Toolkit for Reasoning with AI-based Defect Detection and Classification Models

arXiv.org Artificial Intelligence

Artificial intelligence (AI) reasoning and explainable AI (XAI) tasks have gained popularity recently, enabling users to explain the predictions or decision processes of AI models. This paper introduces Forest Monkey (FM), a toolkit designed to reason the outputs of any AI-based defect detection and/or classification model with data explainability. Implemented as a Python package, FM takes input in the form of dataset folder paths (including original images, ground truth labels, and predicted labels) and provides a set of charts and a text file to illustrate the reasoning results and suggest possible improvements. The FM toolkit consists of processes such as feature extraction from predictions to reasoning targets, feature extraction from images to defect characteristics, and a decision tree-based AI-Reasoner. Additionally, this paper investigates the time performance of the FM toolkit when applied to four AI models with different datasets. Lastly, a tutorial is provided to guide users in performing reasoning tasks using the FM toolkit.


Advancing continual lifelong learning in neural information retrieval: definition, dataset, framework, and empirical evaluation

arXiv.org Artificial Intelligence

Continual learning refers to the capability of a machine learning model to learn and adapt to new information, without compromising its performance on previously learned tasks. Although several studies have investigated continual learning methods for information retrieval tasks, a well-defined task formulation is still lacking, and it is unclear how typical learning strategies perform in this context. To address this challenge, a systematic task formulation of continual neural information retrieval is presented, along with a multiple-topic dataset that simulates continuous information retrieval. A comprehensive continual neural information retrieval framework consisting of typical retrieval models and continual learning strategies is then proposed. Empirical evaluations illustrate that the proposed framework can successfully prevent catastrophic forgetting in neural information retrieval and enhance performance on previously learned tasks. The results indicate that embedding-based retrieval models experience a decline in their continual learning performance as the topic shift distance and dataset volume of new tasks increase. In contrast, pretraining-based models do not show any such correlation. Adopting suitable learning strategies can mitigate the effects of topic shift and data augmentation.


Identifying Early Help Referrals For Local Authorities With Machine Learning And Bias Analysis

arXiv.org Artificial Intelligence

Local authorities in England, such as Leicestershire County Council (LCC), provide Early Help services that can be offered at any point in a young person's life when they experience difficulties that cannot be supported by universal services alone, such as schools. This paper investigates the utilisation of machine learning (ML) to assist experts in identifying families that may need to be referred for Early Help assessment and support. LCC provided an anonymised dataset comprising 14360 records of young people under the age of 18. The dataset was pre-processed, machine learning models were build, and experiments were conducted to validate and test the performance of the models. Bias mitigation techniques were applied to improve the fairness of these models. During testing, while the models demonstrated the capability to identify young people requiring intervention or early help, they also produced a significant number of false positives, especially when constructed with imbalanced data, incorrectly identifying individuals who most likely did not need an Early Help referral. This paper empirically explores the suitability of data-driven ML models for identifying young people who may require Early Help services and discusses their appropriateness and limitations for this task.