Goto

Collaborating Authors

 Cornuéjols, Antoine


Deep Reinforcement Learning based Triggering Function for Early Classifiers of Time Series

arXiv.org Artificial Intelligence

Early Classification of Time Series (ECTS) has been recognized as an important problem in many areas where decisions have to be taken as soon as possible, before the full data availability, while time pressure increases. Numerous ECTS approaches have been proposed, based on different triggering functions, each taking into account various pieces of information related to the incoming time series and/or the output of a classifier. Although their performances have been empirically compared in the literature, no studies have been carried out on the optimality of these triggering functions that involve ``man-tailored'' decision rules. Based on the same information, could there be better triggering functions? This paper presents one way to investigate this question by showing first how to translate ECTS problems into Reinforcement Learning (RL) ones, where the very same information is used in the state space. A thorough comparison of the performance obtained by ``handmade'' approaches and their ``RL-based'' counterparts has been carried out. A second question investigated in this paper is whether a different combination of information, defining the state space in RL systems, can achieve even better performance. Experiments show that the system we describe, called \textsc{Alert}, significantly outperforms its state-of-the-art competitors on a large number of datasets.


biquality-learn: a Python library for Biquality Learning

arXiv.org Artificial Intelligence

The democratization of Data Mining has been widely successful thanks in part to powerful and easy-to-use Machine Learning libraries. These libraries have been particularly tailored to tackle Supervised Learning. However, strong supervision signals are scarce in practice, and practitioners must resort to weak supervision. In addition to weaknesses of supervision, dataset shifts are another kind of phenomenon that occurs when deploying machine learning models in the real world. That is why Biquality Learning has been proposed as a machine learning framework to design algorithms capable of handling multiple weaknesses of supervision and dataset shifts without assumptions on their nature and level by relying on the availability of a small trusted dataset composed of cleanly labeled and representative samples. Thus we propose biquality-learn: a Python library for Biquality Learning with an intuitive and consistent API to learn machine learning models from biquality data, with well-proven algorithms, accessible and easy to use for everyone, and enabling researchers to experiment in a reproducible way on biquality data.


Open challenges for Machine Learning based Early Decision-Making research

arXiv.org Artificial Intelligence

More and more applications require early decisions, i.e. taken as soon as possible from partially observed data. However, the later a decision is made, the more its accuracy tends to improve, since the description of the problem to hand is enriched over time. Such a compromise between the earliness and the accuracy of decisions has been particularly studied in the field of Early Time Series Classification. This paper introduces a more general problem, called Machine Learning based Early Decision Making (ML-EDM), which consists in optimizing the decision times of models in a wide range of settings where data is collected over time. After defining the ML-EDM problem, ten challenges are identified and proposed to the scientific community to further research in this area. These challenges open important application perspectives, discussed in this paper.


Early and Revocable Time Series Classification

arXiv.org Artificial Intelligence

Many approaches have been proposed for early classification of time series in light of itssignificance in a wide range of applications including healthcare, transportation and fi-nance. Until now, the early classification problem has been dealt with by considering onlyirrevocable decisions. This paper introduces a new problem calledearly and revocabletimeseries classification, where the decision maker can revoke its earlier decisions based on thenew available measurements. In order to formalize and tackle this problem, we propose anew cost-based framework and derive two new approaches from it. The first approach doesnot consider explicitly the cost of changing decision, while the second one does. Exten-sive experiments are conducted to evaluate these approaches on a large benchmark of realdatasets. The empirical results obtained convincingly show (i) that the ability of revok-ing decisions significantly improves performance over the irrevocable regime, and (ii) thattaking into account the cost of changing decision brings even better results in general.Keywords:revocable decisions, cost estimation, online decision making


From Weakly Supervised Learning to Biquality Learning: an Introduction

arXiv.org Artificial Intelligence

The field of Weakly Supervised Learning (WSL) has recently seen a surge of popularity, with numerous papers addressing different types of "supervision deficiencies". In WSL use cases, a variety of situations exists where the collected "information" is imperfect. The paradigm of WSL attempts to list and cover these problems with associated solutions. In this paper, we review the research progress on WSL with the aim to make it as a brief introduction to this field. We present the three axis of WSL cube and an overview of most of all the elements of their facets. We propose three measurable quantities that acts as coordinates in the previously defined cube namely: Quality, Adaptability and Quantity of information. Thus we suggest that Biquality Learning framework can be defined as a plan of the WSL cube and propose to re-discover previously unrelated patches in WSL literature as a unified Biquality Learning literature.


Early Classification of Time Series. Cost-based Optimization Criterion and Algorithms

arXiv.org Machine Learning

An increasing number of applications require to recognize the class of an incoming time series as quickly as possible without unduly compromising the accuracy of the prediction. In this paper, we put forward a new optimization criterion which takes into account both the cost of misclassification and the cost of delaying the decision. Based on this optimization criterion, we derived a family of non-myopic algorithms which try to anticipate the expected future gain in information in balance with the cost of waiting. In one class of algorithms, unsupervised-based, the expectations use the clustering of time series, while in a second class, supervised-based, time series are grouped according to the confidence level of the classifier used to label them. Extensive experiments carried out on real data sets using a large range of delay cost functions show that the presented algorithms are able to satisfactorily solving the earliness vs. accuracy trade-off, with the supervised-based approaches faring better than the unsupervised-based ones. In addition, all these methods perform better in a wide variety of conditions than a state of the art method based on a myopic strategy which is recognized as very competitive.