Goto

Collaborating Authors

 Corcoran, Peter


Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion Models for Enhanced Skin Disease Classification using ViT and CNN

arXiv.org Artificial Intelligence

This study explores the utilization of Dermatoscopic synthetic data generated through stable diffusion models as a strategy for enhancing the robustness of machine learning model training. Synthetic data generation plays a pivotal role in mitigating challenges associated with limited labeled datasets, thereby facilitating more effective model training. In this context, we aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning and a small amount of data representation in text-to-image latent diffusion models. The optimally tuned model is further used for rendering high-quality skin lesion synthetic data with diverse and realistic characteristics, providing a valuable supplement and diversity to the existing training data. We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models, assessing its effectiveness in enhancing model performance and generalization to unseen real-world data. Our experimental results demonstrate the efficacy of the synthetic data generated through stable diffusion models helps in improving the robustness and adaptability of end-to-end CNN and vision transformer models on two different real-world skin lesion datasets.


Data Center Audio/Video Intelligence on Device (DAVID) -- An Edge-AI Platform for Smart-Toys

arXiv.org Artificial Intelligence

An overview is given of the DAVID Smart-Toy platform, one of the first Edge AI platform designs to incorporate advanced low-power data processing by neural inference models co-located with the relevant image or audio sensors. There is also on-board capability for in-device text-to-speech generation. Two alternative embodiments are presented: a smart Teddy-bear, and a roving dog-like robot. The platform offers a speech-driven user interface and can observe and interpret user actions and facial expressions via its computer vision sensor node. A particular benefit of this design is that no personally identifiable information passes beyond the neural inference nodes thus providing inbuilt compliance with data protection regulations.


Synthetic Speaking Children -- Why We Need Them and How to Make Them

arXiv.org Artificial Intelligence

Contemporary Human Computer Interaction (HCI) research relies primarily on neural network models for machine vision and speech understanding of a system user. Such models require extensively annotated training datasets for optimal performance and when building interfaces for users from a vulnerable population such as young children, GDPR introduces significant complexities in data collection, management, and processing. Motivated by the training needs of an Edge AI smart toy platform this research explores the latest advances in generative neural technologies and provides a working proof of concept of a controllable data generation pipeline for speech driven facial training data at scale. In this context, we demonstrate how StyleGAN2 can be finetuned to create a gender balanced dataset of children's faces. This dataset includes a variety of controllable factors such as facial expressions, age variations, facial poses, and even speech-driven animations with realistic lip synchronization. By combining generative text to speech models for child voice synthesis and a 3D landmark based talking heads pipeline, we can generate highly realistic, entirely synthetic, talking child video clips. These video clips can provide valuable, and controllable, synthetic training data for neural network models, bridging the gap when real data is scarce or restricted due to privacy regulations.


A comparative analysis between Conformer-Transducer, Whisper, and wav2vec2 for improving the child speech recognition

arXiv.org Artificial Intelligence

Automatic Speech Recognition (ASR) systems have progressed significantly in their performance on adult speech data; however, transcribing child speech remains challenging due to the acoustic differences in the characteristics of child and adult voices. This work aims to explore the potential of adapting state-of-the-art Conformer-transducer models to child speech to improve child speech recognition performance. Furthermore, the results are compared with those of self-supervised wav2vec2 models and semi-supervised multi-domain Whisper models that were previously finetuned on the same data. We demonstrate that finetuning Conformer-transducer models on child speech yields significant improvements in ASR performance on child speech, compared to the non-finetuned models. We also show Whisper and wav2vec2 adaptation on different child speech datasets. Our detailed comparative analysis shows that wav2vec2 provides the most consistent performance improvements among the three methods studied.


Improved Child Text-to-Speech Synthesis through Fastpitch-based Transfer Learning

arXiv.org Artificial Intelligence

Speech synthesis technology has witnessed significant advancements in recent years, enabling the creation of natural and expressive synthetic speech. One area of particular interest is the generation of synthetic child speech, which presents unique challenges due to children's distinct vocal characteristics and developmental stages. This paper presents a novel approach that leverages the Fastpitch text-to-speech (TTS) model for generating high-quality synthetic child speech. This study uses the transfer learning training pipeline. The approach involved finetuning a multi-speaker TTS model to work with child speech. We use the cleaned version of the publicly available MyST dataset (55 hours) for our finetuning experiments. We also release a prototype dataset of synthetic speech samples generated from this research together with model code to support further research. By using a pretrained MOSNet, we conducted an objective assessment that showed a significant correlation between real and synthetic child voices. Additionally, to validate the intelligibility of the generated speech, we employed an automatic speech recognition (ASR) model to compare the word error rates (WER) of real and synthetic child voices. The speaker similarity between the real and generated speech is also measured using a pretrained speaker encoder.


Adaptation of Whisper models to child speech recognition

arXiv.org Artificial Intelligence

Automatic Speech Recognition (ASR) systems often struggle with transcribing child speech due to the lack of large child speech datasets required to accurately train child-friendly ASR models. However, there are huge amounts of annotated adult speech datasets which were used to create multilingual ASR models, such as Whisper. Our work aims to explore whether such models can be adapted to child speech to improve ASR for children. In addition, we compare Whisper child-adaptations with finetuned self-supervised models, such as wav2vec2. We demonstrate that finetuning Whisper on child speech yields significant improvements in ASR performance on child speech, compared to non finetuned Whisper models. Additionally, utilizing self-supervised Wav2vec2 models that have been finetuned on child speech outperforms Whisper finetuning.


Speech Driven Video Editing via an Audio-Conditioned Diffusion Model

arXiv.org Artificial Intelligence

Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking person, and a separate auditory speech recording, the lip and jaw motions are re-synchronized without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio-driven video editing.


Towards End-to-End Neural Face Authentication in the Wild -- Quantifying and Compensating for Directional Lighting Effects

arXiv.org Artificial Intelligence

The recent availability of low-power neural accelerator hardware, combined with improvements in end-to-end neural facial recognition algorithms provides, enabling technology for on-device facial authentication. The present research work examines the effects of directional lighting on a State-of-Art(SoA) neural face recognizer. A synthetic re-lighting technique is used to augment data samples due to the lack of public data-sets with sufficient directional lighting variations. Top lighting and its variants (top-left, top-right) are found to have minimal effect on accuracy, while bottom-left or bottom-right directional lighting has the most pronounced effects. Following the fine-tuning of network weights, the face recognition model is shown to achieve close to the original Receiver Operating Characteristic curve (ROC)performance across all lighting conditions and demonstrates an ability to generalize beyond the lighting augmentations used in the fine-tuning data-set. This work shows that an SoA neural face recognition model can be tuned to compensate for directional lighting effects, removing the need for a pre-processing step before applying facial recognition.


Generating Thermal Image Data Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies

arXiv.org Machine Learning

Methods for generating synthetic data have become of increasing importance to build large datasets required for Convolution Neural Networks (CNN) based deep learning techniques for a wide range of computer vision applications. In this work, we extend existing methodologies to show how 2D thermal facial data can be mapped to provide 3D facial models. For the proposed research work we have used tufts datasets for generating 3D varying face poses by using a single frontal face pose. The system works by refining the existing image quality by performing fusion based image preprocessing operations. The refined outputs have better contrast adjustments, decreased noise level and higher exposedness of the dark regions. It makes the facial landmarks and temperature patterns on the human face more discernible and visible when compared to original raw data. Different image quality metrics are used to compare the refined version of images with original images. In the next phase of the proposed study, the refined version of images is used to create 3D facial geometry structures by using Convolution Neural Networks (CNN). The generated outputs are then imported in blender software to finally extract the 3D thermal facial outputs of both males and females. The same technique is also used on our thermal face data acquired using prototype thermal camera (developed under Heliaus EU project) in an indoor lab environment which is then used for generating synthetic 3D face data along with varying yaw face angles and lastly facial depth map is generated.


Smart Augmentation - Learning an Optimal Data Augmentation Strategy

arXiv.org Machine Learning

A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks(DNN). There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method which we call Smart Augmentation and we show how to use it to increase the accuracy and reduce overfitting on a target network. Smart Augmentation works by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart Augmentation has shown the potential to increase accuracy by demonstrably significant measures on all datasets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.