Constable, Will
TorchTitan: One-stop PyTorch native solution for production ready LLM pre-training
Liang, Wanchao, Liu, Tianyu, Wright, Less, Constable, Will, Gu, Andrew, Huang, Chien-Chin, Zhang, Iris, Feng, Wei, Huang, Howard, Wang, Junjie, Purandare, Sanket, Nadathur, Gokul, Idreos, Stratos
The development of large language models (LLMs) has been instrumental in advancing state-of-the-art natural language processing applications. Training LLMs with billions of parameters and trillions of tokens require sophisticated distributed systems that enable composing and comparing several state-of-the-art techniques in order to efficiently scale across thousands of accelerators. However, existing solutions are complex, scattered across multiple libraries/repositories, lack interoperability, and are cumbersome to maintain. Thus, curating and empirically comparing training recipes require non-trivial engineering effort. This paper introduces TorchTitan, an open-source, PyTorch-native distributed training system that unifies state-of-the-art techniques, streamlining integration and reducing overhead. TorchTitan enables 3D parallelism in a modular manner with elastic scaling, providing comprehensive logging, checkpointing, and debugging tools for production-ready training. It also incorporates hardware-software co-designed solutions, leveraging features like Float8 training and SymmetricMemory. As a flexible test bed, TorchTitan facilitates custom recipe curation and comparison, allowing us to develop optimized training recipes for Llama 3.1 and provide guidance on selecting techniques for maximum efficiency based on our experiences. We thoroughly assess TorchTitan on the Llama 3.1 family of LLMs, spanning 8 billion to 405 billion parameters, and showcase its exceptional performance, modular composability, and elastic scalability. By stacking training optimizations, we demonstrate accelerations of 65.08% with 1D parallelism at the 128-GPU scale (Llama 3.1 8B), an additional 12.59% with 2D parallelism at the 256-GPU scale (Llama 3.1 70B), and an additional 30% with 3D parallelism at the 512-GPU scale (Llama 3.1 405B) on NVIDIA H100 GPUs over optimized baselines.
TorchBench: Benchmarking PyTorch with High API Surface Coverage
Hao, Yueming, Zhao, Xu, Bao, Bin, Berard, David, Constable, Will, Aziz, Adnan, Liu, Xu
Deep learning (DL) has been a revolutionary technique in various domains. To facilitate the model development and deployment, many deep learning frameworks are proposed, among which PyTorch is one of the most popular solutions. The performance of ecosystem around PyTorch is critically important, which saves the costs of training models and reduces the response time of model inferences. In this paper, we propose TorchBench, a novel benchmark suite to study the performance of PyTorch software stack. Unlike existing benchmark suites, TorchBench encloses many representative models, covering a large PyTorch API surface. TorchBench is able to comprehensively characterize the performance of the PyTorch software stack, guiding the performance optimization across models, PyTorch framework, and GPU libraries. We show two practical use cases of TorchBench. (1) We profile TorchBench to identify GPU performance inefficiencies in PyTorch. We are able to optimize many performance bugs and upstream patches to the official PyTorch repository. (2) We integrate TorchBench into PyTorch continuous integration system. We are able to identify performance regression in multiple daily code checkins to prevent PyTorch repository from introducing performance bugs. TorchBench is open source and keeps evolving.