Goto

Collaborating Authors

 Cong, Yang


Learning Generalizable 3D Manipulation With 10 Demonstrations

arXiv.org Artificial Intelligence

Learning robust and generalizable manipulation skills from demonstrations remains a key challenge in robotics, with broad applications in industrial automation and service robotics. While recent imitation learning methods have achieved impressive results, they often require large amounts of demonstration data and struggle to generalize across different spatial variants. In this work, we present a novel framework that learns manipulation skills from as few as 10 demonstrations, yet still generalizes to spatial variants such as different initial object positions and camera viewpoints. Our framework consists of two key modules: Semantic Guided Perception (SGP), which constructs task-focused, spatially aware 3D point cloud representations from RGB-D inputs; and Spatial Generalized Decision (SGD), an efficient diffusion-based decision-making module that generates actions via denoising. To effectively learn generalization ability from limited data, we introduce a critical spatially equivariant training strategy that captures the spatial knowledge embedded in expert demonstrations. We validate our framework through extensive experiments on both simulation benchmarks and real-world robotic systems. Our method demonstrates a 60 percent improvement in success rates over state-of-the-art approaches on a series of challenging tasks, even with substantial variations in object poses and camera viewpoints. This work shows significant potential for advancing efficient, generalizable manipulation skill learning in real-world applications.


Never-Ending Behavior-Cloning Agent for Robotic Manipulation

arXiv.org Artificial Intelligence

Relying on multi-modal observations, embodied robots could perform multiple robotic manipulation tasks in unstructured real-world environments. However, most language-conditioned behavior-cloning agents still face existing long-standing challenges, i.e., 3D scene representation and human-level task learning, when adapting into new sequential tasks in practical scenarios. We here investigate these above challenges with NBAgent in embodied robots, a pioneering language-conditioned Never-ending Behavior-cloning Agent. It can continually learn observation knowledge of novel 3D scene semantics and robot manipulation skills from skill-shared and skill-specific attributes, respectively. Specifically, we propose a skill-sharedsemantic rendering module and a skill-shared representation distillation module to effectively learn 3D scene semantics from skill-shared attribute, further tackling 3D scene representation overlooking. Meanwhile, we establish a skill-specific evolving planner to perform manipulation knowledge decoupling, which can continually embed novel skill-specific knowledge like human from latent and low-rank space. Finally, we design a never-ending embodied robot manipulation benchmark, and expensive experiments demonstrate the significant performance of our method. Visual results, code, and dataset are provided at: https://neragent.github.io.


Marrying NeRF with Feature Matching for One-step Pose Estimation

arXiv.org Artificial Intelligence

Given the image collection of an object, we aim at building a real-time image-based pose estimation method, which requires neither its CAD model nor hours of object-specific training. Recent NeRF-based methods provide a promising solution by directly optimizing the pose from pixel loss between rendered and target images. However, during inference, they require long converging time, and suffer from local minima, making them impractical for real-time robot applications. We aim at solving this problem by marrying image matching with NeRF. With 2D matches and depth rendered by NeRF, we directly solve the pose in one step by building 2D-3D correspondences between target and initial view, thus allowing for real-time prediction. Moreover, to improve the accuracy of 2D-3D correspondences, we propose a 3D consistent point mining strategy, which effectively discards unfaithful points reconstruted by NeRF. Moreover, current NeRF-based methods naively optimizing pixel loss fail at occluded images. Thus, we further propose a 2D matches based sampling strategy to preclude the occluded area. Experimental results on representative datasets prove that our method outperforms state-of-the-art methods, and improves inference efficiency by 90x, achieving real-time prediction at 6 FPS.


Create Your World: Lifelong Text-to-Image Diffusion

arXiv.org Artificial Intelligence

Text-to-image generative models can produce diverse high-quality images of concepts with a text prompt, which have demonstrated excellent ability in image generation, image translation, etc. We in this work study the problem of synthesizing instantiations of a use's own concepts in a never-ending manner, i.e., create your world, where the new concepts from user are quickly learned with a few examples. To achieve this goal, we propose a Lifelong text-to-image Diffusion Model (L2DM), which intends to overcome knowledge "catastrophic forgetting" for the past encountered concepts, and semantic "catastrophic neglecting" for one or more concepts in the text prompt. In respect of knowledge "catastrophic forgetting", our L2DM framework devises a task-aware memory enhancement module and a elastic-concept distillation module, which could respectively safeguard the knowledge of both prior concepts and each past personalized concept. When generating images with a user text prompt, the solution to semantic "catastrophic neglecting" is that a concept attention artist module can alleviate the semantic neglecting from concept aspect, and an orthogonal attention module can reduce the semantic binding from attribute aspect. To the end, our model can generate more faithful image across a range of continual text prompts in terms of both qualitative and quantitative metrics, when comparing with the related state-of-the-art models. The code will be released at https://wenqiliang.github.io/.


Self-paced Weight Consolidation for Continual Learning

arXiv.org Artificial Intelligence

Continual learning algorithms which keep the parameters of new tasks close to that of previous tasks, are popular in preventing catastrophic forgetting in sequential task learning settings. However, 1) the performance for the new continual learner will be degraded without distinguishing the contributions of previously learned tasks; 2) the computational cost will be greatly increased with the number of tasks, since most existing algorithms need to regularize all previous tasks when learning new tasks. To address the above challenges, we propose a self-paced Weight Consolidation (spWC) framework to attain robust continual learning via evaluating the discriminative contributions of previous tasks. To be specific, we develop a self-paced regularization to reflect the priorities of past tasks via measuring difficulty based on key performance indicator (i.e., accuracy). When encountering a new task, all previous tasks are sorted from "difficult" to "easy" based on the priorities. Then the parameters of the new continual learner will be learned via selectively maintaining the knowledge amongst more difficult past tasks, which could well overcome catastrophic forgetting with less computational cost. We adopt an alternative convex search to iteratively update the model parameters and priority weights in the bi-convex formulation. The proposed spWC framework is plug-and-play, which is applicable to most continual learning algorithms (e.g., EWC, MAS and RCIL) in different directions (e.g., classification and segmentation). Experimental results on several public benchmark datasets demonstrate that our proposed framework can effectively improve performance when compared with other popular continual learning algorithms.


Unsupervised Dense Deformation Embedding Network for Template-Free Shape Correspondence

arXiv.org Artificial Intelligence

Shape correspondence from 3D deformation learning has attracted appealing academy interests recently. Nevertheless, current deep learning based methods require the supervision of dense annotations to learn per-point translations, which severely overparameterize the deformation process. Moreover, they fail to capture local geometric details of original shape via global feature embedding. To address these challenges, we develop a new Unsupervised Dense Deformation Embedding Network (i.e., UD^2E-Net), which learns to predict deformations between non-rigid shapes from dense local features. Since it is non-trivial to match deformation-variant local features for deformation prediction, we develop an Extrinsic-Intrinsic Autoencoder to frst encode extrinsic geometric features from source into intrinsic coordinates in a shared canonical shape, with which the decoder then synthesizes corresponding target features. Moreover, a bounded maximum mean discrepancy loss is developed to mitigate the distribution divergence between the synthesized and original features. To learn natural deformation without dense supervision, we introduce a coarse parameterized deformation graph, for which a novel trace and propagation algorithm is proposed to improve both the quality and effciency of the deformation. Our UD^2E-Net outperforms state-of-the-art unsupervised methods by 24% on Faust Inter challenge and even supervised methods by 13% on Faust Intra challenge.


Evolving Metric Learning for Incremental and Decremental Features

arXiv.org Machine Learning

Online metric learning has been widely exploited for large-scale data classification due to the low computational cost. However, amongst online practical scenarios where the features are evolving (e.g., some features are vanished and some new features are augmented), most metric learning models cannot be successfully applied into these scenarios although they can tackle the evolving instances efficiently. To address the challenge, we propose a new online Evolving Metric Learning (EML) model for incremental and decremental features, which can handle the instance and feature evolutions simultaneously by incorporating with a smoothed Wasserstein metric distance. Specifically, our model contains two essential stages: the Transforming stage (T-stage) and the Inheriting stage (I-stage). For the T-stage, we propose to extract important information from vanished features while neglecting non-informative knowledge, and forward it into survived features by transforming them into a low-rank discriminative metric space. It further explores the intrinsic low-rank structure of heterogeneous samples to reduce the computation and memory burden especially for highly-dimensional large-scale data. For the I-stage, we inherit the metric performance of survived features from the T-stage and then expand to include the augmented new features. Moreover, the smoothed Wasserstein distance is utilized to characterize the similarity relations among the complex and heterogeneous data, since the evolving features in the different stages are not strictly aligned. In addition to tackling the challenges in one-shot case, we also extend our model into multi-shot scenario. After deriving an efficient optimization method for both T-stage and I-stage, extensive experiments on several benchmark datasets verify the superiority of our model.


Representative Task Self-selection for Flexible Clustered Lifelong Learning

arXiv.org Artificial Intelligence

Consider the lifelong learning paradigm whose objective is to learn a sequence of tasks depending on previous experiences, e.g., knowledge library or deep network weights. However, the knowledge libraries or deep networks for most recent lifelong learning models are with prescribed size, and can degenerate the performance for both learned tasks and coming ones when facing with a new task environment (cluster). To address this challenge, we propose a novel incremental clustered lifelong learning framework with two knowledge libraries: feature learning library and model knowledge library, called Flexible Clustered Lifelong Learning (FCL3). Specifically, the feature learning library modeled by an autoencoder architecture maintains a set of representation common across all the observed tasks, and the model knowledge library can be self-selected by identifying and adding new representative models (clusters). When a new task arrives, our proposed FCL3 model firstly transfers knowledge from these libraries to encode the new task, i.e., effectively and selectively soft-assigning this new task to multiple representative models over feature learning library. Then, 1) the new task with a higher outlier probability will then be judged as a new representative, and used to redefine both feature learning library and representative models over time; or 2) the new task with lower outlier probability will only refine the feature learning library. For model optimization, we cast this lifelong learning problem as an alternating direction minimization problem as a new task comes. Finally, we evaluate the proposed framework by analyzing several multi-task datasets, and the experimental results demonstrate that our FCL3 model can achieve better performance than most lifelong learning frameworks, even batch clustered multi-task learning models.


Active Lifelong Learning With "Watchdog"

AAAI Conferences

Lifelong learning intends to learn new consecutive tasks depending on previously accumulated experiences, i.e., knowledge library. However, the knowledge among different new coming tasks are imbalance. Therefore, in this paper, we try to mimic an effective "human cognition" strategy by actively sorting the importance of new tasks in the process of unknown-to-known and selecting to learn the important tasks with more information preferentially. To achieve this, we consider to assess the importance of the new coming task, i.e., unknown or not, as an outlier detection issue, and design a hierarchical dictionary learning model consisting of two-level task descriptors to sparse reconstruct each task with the l0 norm constraint. The new coming tasks are sorted depending on the sparse reconstruction score in descending order, and the task with high reconstruction score will be permitted to pass, where this mechanism is called as "watchdog." Next, the knowledge library of the lifelong learning framework encode the selected task by transferring previous knowledge, and then can also update itself with knowledge from both previously learned task and current task automatically. For model optimization, the alternating direction method is employed to solve our model and converges to a fixed point. Extensive experiments on both benchmark datasets and our own dataset demonstrate the effectiveness of our proposed model especially in task selection and dictionary learning.