Goto

Collaborating Authors

 Condoravdi, Cleo


Natural Language Access to Data: It Takes Common Sense!

AAAI Conferences

Commonsense reasoning proves to be an essential tool for natural-language access to data. In a deductive approach to this problem, language processing technology translates English queries into a first-order logical form, which is regarded as a conjecture to be established by a theorem prover. Subject domain knowledge is encoded in an axiomatic theory equipped with links to appropriate databases. Commonsense reasoning is necessary to disambiguate the query, to connect the query with relevant tables in the databases, to deal with logical relationships in the query, and to achieve interoperability between disparate databases. This is illustrated with examples from a proof-of-concept system called Quest, which deals with queries over business enterprise data for an industrial QA system.


Accessing Structured Health Information through English Queries and Automatic Deduction

AAAI Conferences

While much health data is available online, patients who are not technically astute may be unable to access it because they may not know the relevant resources, they may be reluctant to confront an unfamiliar interface, and they may not know how to compose an answer from information provided by multiple heterogeneous resources. We describe ongoing research in using natural English text queries and automated deduction to obtain answers based on multiple structured data sources in a specific subject domain. Each English query is transformed using natural language technology into an unambiguous logical form; this is submitted to a theorem prover that operates over an axiomatic theory of the subject domain. Symbols in the theory are linked to relations in external databases known to the system. An answer is obtained from the proof, along with an English language explanation of how the answer was obtained. Answers need not be present explicitly in any of the databases, but rather may be deduced or computed from the information they provide. Although English is highly ambiguous, the natural language technology is informed by subject domain knowledge, so that readings of the query that are syntactically plausible but semantically impossible are discarded. When a question is still ambiguous, the system can interrogate the patient to determine what meaning was intended. Additional queries can clarify earlier ones or ask questions referring to previously computed answers. We describe a prototype system, Quadri, which answers questions about HIV treatment using the Stanford HIV Drug Resistance Database and other resources. Natural language processing is provided by PARC’s Bridge, and the deductive mechanism is SRI’s SNARK theorem prover. We discuss some of the problems that must be faced to make this approach work, and some of our solutions.