Coley, Connor
Effective Protein-Protein Interaction Exploration with PPIretrieval
Hua, Chenqing, Coley, Connor, Wolf, Guy, Precup, Doina, Zheng, Shuangjia
Protein-protein interactions (PPIs) are crucial in regulating numerous cellular functions, including signal transduction, transportation, and immune defense. As the accuracy of multi-chain protein complex structure prediction improves, the challenge has shifted towards effectively navigating the vast complex universe to identify potential PPIs. Herein, we propose PPIretrieval, the first deep learning-based model for protein-protein interaction exploration, which leverages existing PPI data to effectively search for potential PPIs in an embedding space, capturing rich geometric and chemical information of protein surfaces. When provided with an unseen query protein with its associated binding site, PPIretrieval effectively identifies a potential binding partner along with its corresponding binding site in an embedding space, facilitating the formation of protein-protein complexes.
Are Learned Molecular Representations Ready For Prime Time?
Yang, Kevin, Swanson, Kyle, Jin, Wengong, Coley, Connor, Eiden, Philipp, Gao, Hua, Guzman-Perez, Angel, Hopper, Timothy, Kelley, Brian, Mathea, Miriam, Palmer, Andrew, Settels, Volker, Jaakkola, Tommi, Jensen, Klavs, Barzilay, Regina
Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 15 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows.
Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network
Jin, Wengong, Coley, Connor, Barzilay, Regina, Jaakkola, Tommi
The prediction of organic reaction outcomes is a fundamental problem in computational chemistry. Since a reaction may involve hundreds of atoms, fully exploring the space of possible transformations is intractable. The current solution utilizes reaction templates to limit the space, but it suffers from coverage and efficiency issues. In this paper, we propose a template-free approach to efficiently explore the space of product molecules by first pinpointing the reaction center -- the set of nodes and edges where graph edits occur. Since only a small number of atoms contribute to reaction center, we can directly enumerate candidate products. The generated candidates are scored by a Weisfeiler-Lehman Difference Network that models high-order interactions between changes occurring at nodes across the molecule. Our framework outperforms the top-performing template-based approach with a 10% margin, while running orders of magnitude faster. Finally, we demonstrate that the model accuracy rivals the performance of domain experts.