Goto

Collaborating Authors

 Coles, Andrew


Are Large Language Models Aligned with People's Social Intuitions for Human-Robot Interactions?

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly used in robotics, especially for high-level action planning. Meanwhile, many robotics applications involve human supervisors or collaborators. Hence, it is crucial for LLMs to generate socially acceptable actions that align with people's preferences and values. In this work, we test whether LLMs capture people's intuitions about behavior judgments and communication preferences in human-robot interaction (HRI) scenarios. For evaluation, we reproduce three HRI user studies, comparing the output of LLMs with that of real participants. We find that GPT-4 strongly outperforms other models, generating answers that correlate strongly with users' answers in two studies $\unicode{x2014}$ the first study dealing with selecting the most appropriate communicative act for a robot in various situations ($r_s$ = 0.82), and the second with judging the desirability, intentionality, and surprisingness of behavior ($r_s$ = 0.83). However, for the last study, testing whether people judge the behavior of robots and humans differently, no model achieves strong correlations. Moreover, we show that vision models fail to capture the essence of video stimuli and that LLMs tend to rate different communicative acts and behavior desirability higher than people.


Planning and Acting While the Clock Ticks

arXiv.org Artificial Intelligence

Standard temporal planning assumes that planning takes place offline and then execution starts at time 0. Recently, situated temporal planning was introduced, where planning starts at time 0 and execution occurs after planning terminates. Situated temporal planning reflects a more realistic scenario where time passes during planning. However, in situated temporal planning a complete plan must be generated before any action is executed. In some problems with time pressure, timing is too tight to complete planning before the first action must be executed. For example, an autonomous car that has a truck backing towards it should probably move out of the way now and plan how to get to its destination later. In this paper, we propose a new problem setting: concurrent planning and execution, in which actions can be dispatched (executed) before planning terminates. Unlike previous work on planning and execution, we must handle wall clock deadlines that affect action applicability and goal achievement (as in situated planning) while also supporting dispatching actions before a complete plan has been found. We extend previous work on metareasoning for situated temporal planning to develop an algorithm for this new setting. Our empirical evaluation shows that when there is strong time pressure, our approach outperforms situated temporal planning.


Situated Planning for Execution Under Temporal Constraints

AAAI Conferences

One of the original motivations for domain-independent planning was to generate plans that would then be executed in the environment. However, most existing planners ignore the passage of time during planning. While this can work well when absolute time does not play a role, this approach can lead to plans failing when there are external timing constraints, such as deadlines. In this paper, we describe a new approach for time-sensitive temporal planning. Our planner is aware of the fact that plan execution will start only once planning finishes, and incorporates this information into its decision making, in order to focus the search on branches that are more likely to lead to plans that will be feasible when the planner finishes.


Temporal Planning with Preferences and Time-Dependent Continuous Costs

AAAI Conferences

Temporal planning methods usually focus on the objective of minimizing makespan. Unfortunately, this misses a large class of planning problems where it is important to consider a wider variety of temporal and non-temporal preferences, making makespan lower-order concern. In this paper we consider modeling and reasoning with plan quality metrics that are not directly correlated with plan makespan, building on the planner POPF. We begin with the preferences defined in PDDL3, and present a mixed integer programming encoding to manage the the interaction between the hard temporal constraints for plan steps, and soft temporal constraints for preferences. To widen the support of metrics that can be expressed directly in PDDL, we then discuss an extension to soft-deadlines with continuous cost functions, avoiding the need to approximate these with several PDDL3 discrete-cost preferences. We demonstrate the success of our new planner on the benchmark temporal planning problems with preferences, showing that it is the state-of-the-art for such problems. We then analyze the benefits of reasoning with continuous (versus discretized) models of domains with continuous cost functions, showing the improvement in solution quality afforded through making the continuous cost function directly available to the planner.


A Survey of the Seventh International Planning Competition

AI Magazine

In this article we review the 2011 International Planning Competition. We give an overview of the history of the competition, discussing how it has developed since its first edition in 1998. The 2011 competition was run in three main separate tracks: the deterministic (classical) track; the learning track; and the uncertainty track. Each track proposed its own distinct set of new challenges and the participants rose to these admirably, the results of each track showing promising progress in each area. The competition attracted a record number of participants this year, showing its continued and strong position as a major central pillar of the international planning research community.


LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences

AAAI Conferences

In this paper we present a planner, LPRPG-P, capable of reasoning with the non-temporal subset of PDDL 3 preferences. Our focus is on computation of relaxed plan based heuristics that effectively guide a planner towards good solutions satisfying preferences. We build on the planner LPRPG, a hybrid relaxed planning graph (RPG)--linear programming (LP) approach. We make extensions to the RPG to reason with propositional preferences, and to the LP to reason with numeric preferences. LPRPG-P is the first planner with direct guidance for numeric preference satisfaction, exploiting the strong numeric reasoning of the LP. We introduce an anytime search approach for use with our new heuristic, and present results showing that LPRPG-P extends the state of the art in domain-independent planning with preferences.