Goto

Collaborating Authors

 Colantonio, Sara


Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification

arXiv.org Artificial Intelligence

Background and objective: Employing deep learning models in critical domains such as medical imaging poses challenges associated with the limited availability of training data. We present a strategy for improving the performance and generalization capabilities of models trained in low-data regimes. Methods: The proposed method starts with a pre-training phase, where features learned in a self-supervised learning setting are disentangled to improve the robustness of the representations for downstream tasks. We then introduce a meta-fine-tuning step, leveraging related classes between meta-training and meta-testing phases but varying the granularity level. This approach aims to enhance the model's generalization capabilities by exposing it to more challenging classification tasks during meta-training and evaluating it on easier tasks but holding greater clinical relevance during meta-testing. We demonstrate the effectiveness of the proposed approach through a series of experiments exploring several backbones, as well as diverse pre-training and fine-tuning schemes, on two distinct medical tasks, i.e., classification of prostate cancer aggressiveness from MRI data and classification of breast cancer malignity from microscopic images. Results: Our results indicate that the proposed approach consistently yields superior performance w.r.t. ablation experiments, maintaining competitiveness even when a distribution shift between training and evaluation data occurs. Conclusion: Extensive experiments demonstrate the effectiveness and wide applicability of the proposed approach. We hope that this work will add another solution to the arsenal of addressing learning issues in data-scarce imaging domains.


Exploiting Causality Signals in Medical Images: A Pilot Study with Empirical Results

arXiv.org Artificial Intelligence

We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes. This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image. Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene. We develop different architecture variants and empirically evaluate all the models on two public datasets of prostate MRI images and breast histopathology slides for cancer diagnosis. We study the effectiveness of our module both in fully-supervised and few-shot learning, we assess its addition to existing attention-based solutions, we conduct ablation studies, and investigate the explainability of our models via class activation maps. Our findings show that our lightweight block extracts meaningful information and improves the overall classification, together with producing more robust predictions that focus on relevant parts of the image. That is crucial in medical imaging, where accurate and reliable classifications are essential for effective diagnosis and treatment planning.


A Systematic Review of Few-Shot Learning in Medical Imaging

arXiv.org Artificial Intelligence

The lack of annotated medical images limits the performance of deep learning models, which usually need large-scale labelled datasets. Few-shot learning techniques can reduce data scarcity issues and enhance medical image analysis, especially with meta-learning. This systematic review gives a comprehensive overview of few-shot learning in medical imaging. We searched the literature systematically and selected 80 relevant articles published from 2018 to 2023. We clustered the articles based on medical outcomes, such as tumour segmentation, disease classification, and image registration; anatomical structure investigated (i.e. heart, lung, etc.); and the meta-learning method used. For each cluster, we examined the papers' distributions and the results provided by the state-of-the-art. In addition, we identified a generic pipeline shared among all the studies. The review shows that few-shot learning can overcome data scarcity in most outcomes and that meta-learning is a popular choice to perform few-shot learning because it can adapt to new tasks with few labelled samples. In addition, following meta-learning, supervised learning and semi-supervised learning stand out as the predominant techniques employed to tackle few-shot learning challenges in medical imaging and also best performing. Lastly, we observed that the primary application areas predominantly encompass cardiac, pulmonary, and abdominal domains. This systematic review aims to inspire further research to improve medical image analysis and patient care.


Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI

arXiv.org Artificial Intelligence

In this paper, we present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image. Our framework consists of a convolutional neural network backbone and a causality-extractor module that extracts cause-effect relationships between feature maps that can inform the model on the appearance of a feature in one place of the image, given the presence of another feature within some other place of the image. To evaluate the effectiveness of our approach in low-data scenarios, we train our causality-driven architecture in a One-shot learning scheme, where we propose a new meta-learning procedure entailing meta-training and meta-testing tasks that are designed using related classes but at different levels of granularity. We conduct binary and multi-class classification experiments on a publicly available dataset of prostate MRI images. To validate the effectiveness of the proposed causality-driven module, we perform an ablation study and conduct qualitative assessments using class activation maps to highlight regions strongly influencing the network's decision-making process. Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information and yielding more reliable and interpretable predictions. This would make it a promising approach for medical image classification tasks.


The role of causality in explainable artificial intelligence

arXiv.org Artificial Intelligence

Causality and eXplainable Artificial Intelligence (XAI) have developed as separate fields in computer science, even though the underlying concepts of causation and explanation share common ancient roots. This is further enforced by the lack of review works jointly covering these two fields. In this paper, we investigate the literature to try to understand how and to what extent causality and XAI are intertwined. More precisely, we seek to uncover what kinds of relationships exist between the two concepts and how one can benefit from them, for instance, in building trust in AI systems. As a result, three main perspectives are identified. In the first one, the lack of causality is seen as one of the major limitations of current AI and XAI approaches, and the "optimal" form of explanations is investigated. The second is a pragmatic perspective and considers XAI as a tool to foster scientific exploration for causal inquiry, via the identification of pursue-worthy experimental manipulations. Finally, the third perspective supports the idea that causality is propaedeutic to XAI in three possible manners: exploiting concepts borrowed from causality to support or improve XAI, utilizing counterfactuals for explainability, and considering accessing a causal model as explaining itself. To complement our analysis, we also provide relevant software solutions used to automate causal tasks. We believe our work provides a unified view of the two fields of causality and XAI by highlighting potential domain bridges and uncovering possible limitations.


Alzheimer Disease Detection from Raman Spectroscopy of the Cerebrospinal Fluid via Topological Machine Learning

arXiv.org Artificial Intelligence

The cerebrospinal fluid (CSF) of 19 subjects who received a clinical diagnosis of Alzheimer's disease (AD) as well as of 5 pathological controls have been collected and analysed by Raman spectroscopy (RS). We investigated whether the raw and preprocessed Raman spectra could be used to distinguish AD from controls. First, we applied standard Machine Learning (ML) methods obtaining unsatisfactory results. Then, we applied ML to a set of topological descriptors extracted from raw spectra, achieving a very good classification accuracy (> 87%). Although our results are preliminary, they indicate that RS and topological analysis together may provide an effective combination to confirm or disprove a clinical diagnosis of AD. The next steps will include enlarging the dataset of CSF samples to validate the proposed method better and, possibly, to understand if topological data analysis could support the characterization of AD subtypes.


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare

arXiv.org Artificial Intelligence

Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.


Reproducibility of Machine Learning: Terminology, Recommendations and Open Issues

arXiv.org Artificial Intelligence

Reproducibility is one of the core dimensions that concur to deliver Trustworthy Artificial Intelligence. Broadly speaking, reproducibility can be defined as the possibility to reproduce the same or a similar experiment or method, thereby obtaining the same or similar results as the original scientists. It is an essential ingredient of the scientific method and crucial for gaining trust in relevant claims. A reproducibility crisis has been recently acknowledged by scientists and this seems to affect even more Artificial Intelligence and Machine Learning, due to the complexity of the models at the core of their recent successes. Notwithstanding the recent debate on Artificial Intelligence reproducibility, its practical implementation is still insufficient, also because many technical issues are overlooked. In this survey, we critically review the current literature on the topic and highlight the open issues. Our contribution is three-fold. We propose a concise terminological review of the terms coming into play. We collect and systematize existing recommendations for achieving reproducibility, putting forth the means to comply with them. We identify key elements often overlooked in modern Machine Learning and provide novel recommendations for them. We further specialize these for two critical application domains, namely the biomedical and physical artificial intelligence fields.


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Future Medical Imaging

arXiv.org Artificial Intelligence

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.