Colak, Errol
The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Kofler, Florian, Meissen, Felix, Steinbauer, Felix, Graf, Robert, Oswald, Eva, de da Rosa, Ezequiel, Li, Hongwei Bran, Baid, Ujjwal, Hoelzl, Florian, Turgut, Oezguen, Horvath, Izabela, Waldmannstetter, Diana, Bukas, Christina, Adewole, Maruf, Anwar, Syed Muhammad, Janas, Anastasia, Kazerooni, Anahita Fathi, LaBella, Dominic, Moawad, Ahmed W, Farahani, Keyvan, Eddy, James, Bergquist, Timothy, Chung, Verena, Shinohara, Russell Takeshi, Dako, Farouk, Wiggins, Walter, Reitman, Zachary, Wang, Chunhao, Liu, Xinyang, Jiang, Zhifan, Familiar, Ariana, Conte, Gian-Marco, Johanson, Elaine, Meier, Zeke, Davatzikos, Christos, Freymann, John, Kirby, Justin, Bilello, Michel, Fathallah-Shaykh, Hassan M, Wiest, Roland, Kirschke, Jan, Colen, Rivka R, Kotrotsou, Aikaterini, Lamontagne, Pamela, Marcus, Daniel, Milchenko, Mikhail, Nazeri, Arash, Weber, Marc-André, Mahajan, Abhishek, Mohan, Suyash, Mongan, John, Hess, Christopher, Cha, Soonmee, Villanueva-Meyer, Javier, Colak, Errol, Crivellaro, Priscila, Jakab, Andras, Albrecht, Jake, Anazodo, Udunna, Aboian, Mariam, Iglesias, Juan Eugenio, Van Leemput, Koen, Bakas, Spyridon, Rueckert, Daniel, Wiestler, Benedikt, Ezhov, Ivan, Piraud, Marie, Menze, Bjoern
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with a scan that is already pathological. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantees for images featuring lesions. Examples include but are not limited to algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS 2023 inpainting challenge. Here, the participants' task is to explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later it will be updated to summarize the findings of the challenge. The challenge is organized as part of the BraTS 2023 challenge hosted at the MICCAI 2023 conference in Vancouver, Canada.
AI Models Close to your Chest: Robust Federated Learning Strategies for Multi-site CT
Lee, Edward H., Kelly, Brendan, Altinmakas, Emre, Dogan, Hakan, Mohammadzadeh, Maryam, Colak, Errol, Fu, Steve, Choudhury, Olivia, Ratan, Ujjwal, Kitamura, Felipe, Chaves, Hernan, Zheng, Jimmy, Said, Mourad, Reis, Eduardo, Lim, Jaekwang, Yokoo, Patricia, Mitchell, Courtney, Houshmand, Golnaz, Ghassemi, Marzyeh, Killeen, Ronan, Qiu, Wendy, Hayden, Joel, Rafiee, Farnaz, Klochko, Chad, Bevins, Nicholas, Sazgara, Faeze, Wong, S. Simon, Moseley, Michael, Halabi, Safwan, Yeom, Kristen W.
While it is well known that population differences from genetics, sex, race, and environmental factors contribute to disease, AI studies in medicine have largely focused on locoregional patient cohorts with less diverse data sources. Such limitation stems from barriers to large-scale data share and ethical concerns over data privacy. Federated learning (FL) is one potential pathway for AI development that enables learning across hospitals without data share. In this study, we show the results of various FL strategies on one of the largest and most diverse COVID-19 chest CT datasets: 21 participating hospitals across five continents that comprise >10,000 patients with >1 million images. We also propose an FL strategy that leverages synthetically generated data to overcome class and size imbalances. We also describe the sources of data heterogeneity in the context of FL, and show how even among the correctly labeled populations, disparities can arise due to these biases.