Colaco, Andrea
YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks
Bandyopadhyay, Saptarashmi, Bahirwani, Vikas, Aggarwal, Lavisha, Guda, Bhanu, Li, Lin, Colaco, Andrea
Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal agent focuses on the research question of identifying circumstances that may require the agent to intervene proactively. This allows the agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using AR. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding a user to complete procedural tasks.
Augmented Object Intelligence: Making the Analog World Interactable with XR-Objects
Dogan, Mustafa Doga, Gonzalez, Eric J., Colaco, Andrea, Ahuja, Karan, Du, Ruofei, Lee, Johnny, Gonzalez-Franco, Mar, Kim, David
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper introduces Augmented Object Intelligence (AOI), a novel XR interaction paradigm designed to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to vast digital functionalities. Our approach utilizes object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in rich and contextually relevant ways. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system's open-source design and implementation, and (3) show its versatility through a variety of use cases and a user study.