Cohen, Vanya
MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models
Cohen, Vanya, Mooney, Raymond
Entity tracking is a fundamental challenge in natural language understanding, requiring models to maintain coherent representations of entities. Previous work has benchmarked entity tracking performance in purely text-based tasks. We introduce MET-Bench, a multimodal entity tracking benchmark designed to evaluate the ability of vision-language models to track entity states across modalities. Using two structured domains, Chess and the Shell Game, we assess how effectively current models integrate textual and image-based state updates. Our findings reveal a significant performance gap between text-based and image-based tracking and that this performance gap stems from deficits in visual reasoning rather than perception. We further show that explicit text-based reasoning strategies improve performance, yet substantial limitations remain, especially in long-horizon multimodal scenarios. Our results highlight the need for improved multimodal representations and reasoning techniques to bridge the gap between textual and visual entity tracking.
Compositional Instruction Following with Language Models and Reinforcement Learning
Cohen, Vanya, Tasse, Geraud Nangue, Gopalan, Nakul, James, Steven, Gombolay, Matthew, Mooney, Ray, Rosman, Benjamin
Combining reinforcement learning with language grounding is challenging as the agent needs to explore the environment while simultaneously learning multiple language-conditioned tasks. To address this, we introduce a novel method: the compositionally-enabled reinforcement learning language agent (CERLLA). Our method reduces the sample complexity of tasks specified with language by leveraging compositional policy representations and a semantic parser trained using reinforcement learning and in-context learning. We evaluate our approach in an environment requiring function approximation and demonstrate compositional generalization to novel tasks. Our method significantly outperforms the previous best non-compositional baseline in terms of sample complexity on 162 tasks designed to test compositional generalization. Our model attains a higher success rate and learns in fewer steps than the non-compositional baseline. It reaches a success rate equal to an oracle policy's upper-bound performance of 92%. With the same number of environment steps, the baseline only reaches a success rate of 80%.
A Survey of Robotic Language Grounding: Tradeoffs between Symbols and Embeddings
Cohen, Vanya, Liu, Jason Xinyu, Mooney, Raymond, Tellex, Stefanie, Watkins, David
With large language models, robots can understand language more flexibly and more capable than ever before. This survey reviews and situates recent literature into a spectrum with two poles: 1) mapping between language and some manually defined formal representation of meaning, and 2) mapping between language and high-dimensional vector spaces that translate directly to low-level robot policy. Using a formal representation allows the meaning of the language to be precisely represented, limits the size of the learning problem, and leads to a framework for interpretability and formal safety guarantees. Methods that embed language and perceptual data into high-dimensional spaces avoid this manually specified symbolic structure and thus have the potential to be more general when fed enough data but require more data and computing to train. We discuss the benefits and tradeoffs of each approach and finish by providing directions for future work that achieves the best of both worlds.
CaT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
Lal, Yash Kumar, Cohen, Vanya, Chambers, Nathanael, Balasubramanian, Niranjan, Mooney, Raymond
Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
CAPE: Corrective Actions from Precondition Errors using Large Language Models
Raman, Shreyas Sundara, Cohen, Vanya, Paulius, David, Idrees, Ifrah, Rosen, Eric, Mooney, Ray, Tellex, Stefanie
Extracting commonsense knowledge from a large language model (LLM) offers a path to designing intelligent robots. Existing approaches that leverage LLMs for planning are unable to recover when an action fails and often resort to retrying failed actions, without resolving the error's underlying cause. We propose a novel approach (CAPE) that attempts to propose corrective actions to resolve precondition errors during planning. CAPE improves the quality of generated plans by leveraging few-shot reasoning from action preconditions. Our approach enables embodied agents to execute more tasks than baseline methods while ensuring semantic correctness and minimizing re-prompting. In VirtualHome, CAPE generates executable plans while improving a human-annotated plan correctness metric from 28.89% to 49.63% over SayCan. Our improvements transfer to a Boston Dynamics Spot robot initialized with a set of skills (specified in language) and associated preconditions, where CAPE improves the correctness metric of the executed task plans by 76.49% compared to SayCan. Our approach enables the robot to follow natural language commands and robustly recover from failures, which baseline approaches largely cannot resolve or address inefficiently.