Goto

Collaborating Authors

 Cohen, Israel


ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting

arXiv.org Artificial Intelligence

The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.


Enhanced ASR Robustness to Packet Loss with a Front-End Adaptation Network

arXiv.org Artificial Intelligence

In the realm of automatic speech recognition (ASR), robustness in noisy environments remains a significant challenge. Recent ASR models, such as Whisper, have shown promise, but their efficacy in noisy conditions can be further enhanced. This study is focused on recovering from packet loss to improve the word error rate (WER) of ASR models. We propose using a front-end adaptation network connected to a frozen ASR model. The adaptation network is trained to modify the corrupted input spectrum by minimizing the criteria of the ASR model in addition to an enhancement loss function. Our experiments demonstrate that the adaptation network, trained on Whisper's criteria, notably reduces word error rates across domains and languages in packet-loss scenarios. This improvement is achieved with minimal affect to Whisper model's foundational performance, underscoring our method's practicality and potential in enhancing ASR models in challenging acoustic environments.


Data-Driven Tree Transforms and Metrics

arXiv.org Machine Learning

We consider the analysis of high dimensional data given in the form of a matrix with columns consisting of observations and rows consisting of features. Often the data is such that the observations do not reside on a regular grid, and the given order of the features is arbitrary and does not convey a notion of locality. Therefore, traditional transforms and metrics cannot be used for data organization and analysis. In this paper, our goal is to organize the data by defining an appropriate representation and metric such that they respect the smoothness and structure underlying the data. We also aim to generalize the joint clustering of observations and features in the case the data does not fall into clear disjoint groups. For this purpose, we propose multiscale data-driven transforms and metrics based on trees. Their construction is implemented in an iterative refinement procedure that exploits the co-dependencies between features and observations. Beyond the organization of a single dataset, our approach enables us to transfer the organization learned from one dataset to another and to integrate several datasets together. We present an application to breast cancer gene expression analysis: learning metrics on the genes to cluster the tumor samples into cancer sub-types and validating the joint organization of both the genes and the samples. We demonstrate that using our approach to combine information from multiple gene expression cohorts, acquired by different profiling technologies, improves the clustering of tumor samples.


Diffusion Nets

arXiv.org Machine Learning

Non-linear manifold learning enables high-dimensional data analysis, but requires out-of-sample-extension methods to process new data points. In this paper, we propose a manifold learning algorithm based on deep learning to create an encoder, which maps a high-dimensional dataset and its low-dimensional embedding, and a decoder, which takes the embedded data back to the high-dimensional space. Stacking the encoder and decoder together constructs an autoencoder, which we term a diffusion net, that performs out-of-sample-extension as well as outlier detection. We introduce new neural net constraints for the encoder, which preserves the local geometry of the points, and we prove rates of convergence for the encoder. Also, our approach is efficient in both computational complexity and memory requirements, as opposed to previous methods that require storage of all training points in both the high-dimensional and the low-dimensional spaces to calculate the out-of-sample-extension and the pre-image.