Goto

Collaborating Authors

 Cohen, Eyal


HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing

arXiv.org Artificial Intelligence

We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/.


On Parallel versus Serial Processing: A Computational Study of Visual Search

Neural Information Processing Systems

This paper presents a neural-model of pre-attentive visual processing. The model explains why certain displays can be processed very fast, "in parallel", while others require slower, "serial" processing, in subsequent attentional systems. Our approach stems from the observation that the visual environment is overflowing with diverse information, but the biological information-processing systems analyzing it have a limited capacity [1]. This apparent mismatch suggests that data compression should be performed at an early stage of perception, and that via an accompanying process of dimension reduction, only a few essential features of the visual display should be retained. We propose that only parallel displays incorporate global features that enable fast target detection, and hence they can be processed pre-attentively, with all items (target and dis tractors) examined at once.


On Parallel versus Serial Processing: A Computational Study of Visual Search

Neural Information Processing Systems

Using displays of line orientations taken from Wolfe's experiments [1992], we study the hypothesis that the distinction between parallel versus serial processes arises from the availability of global information in the internal representations of the visual scene. The model operates in two phases. First, the visual displays are compressed via principal-component-analysis. Second, the compressed data is processed by a target detector module inorder to identify the existence of a target in the display. Our main finding is that targets in displays which were found experimentally tobe processed in parallel can be detected by the system, while targets in experimentally-serial displays cannot. This fundamental difference is explained via variance analysis of the compressed representations, providing a numerical criterion distinguishing parallelfrom serial displays. Our model yields a mapping of response-time slopes that is similar to Duncan and Humphreys's "search surface" [1989], providing an explicit formulation of their intuitive notion of feature similarity. It presents a neural realization ofthe processing that may underlie the classical metaphorical explanations of visual search.


On Parallel versus Serial Processing: A Computational Study of Visual Search

Neural Information Processing Systems

This paper presents a neural-model of pre-attentive visual processing. The model explains why certain displays can be processed very fast, "in parallel", while others require slower, "serial" processing, in subsequent attentional systems. Our approach stems from the observation that the visual environment is overflowing with diverse information, but the biological information-processing systems analyzing it have a limited capacity [1]. This apparent mismatch suggests that data compression should be performed at an early stage of perception, and that via an accompanying process of dimension reduction, only a few essential features of the visual display should be retained. We propose that only parallel displays incorporate global features that enable fast target detection, and hence they can be processed pre-attentively, with all items (target and dis tractors) examined at once.