Cohan, Setareh
Diffusion-based Planning with Learned Viability Filters
Ioannidis, Nicholas, Reda, Daniele, Cohan, Setareh, van de Panne, Michiel
Diffusion models can be used as a motion planner by sampling from a distribution of possible futures. However, the samples may not satisfy hard constraints that exist only implicitly in the training data, e.g., avoiding falls or not colliding with a wall. We propose learned viability filters that efficiently predict the future success of any given plan, i.e., diffusion sample, and thereby enforce an implicit future-success constraint. Multiple viability filters can also be composed together. We demonstrate the approach on detailed footstep planning for challenging 3D human locomotion tasks, showing the effectiveness of viability filters in performing online planning and control for box-climbing, step-over walls, and obstacle avoidance. We further show that using viability filters is significantly faster than guidance-based diffusion prediction.
Flexible Motion In-betweening with Diffusion Models
Cohan, Setareh, Tevet, Guy, Reda, Daniele, Peng, Xue Bin, van de Panne, Michiel
Motion in-betweening, a fundamental task in character animation, consists of generating motion sequences that plausibly interpolate user-provided keyframe constraints. It has long been recognized as a labor-intensive and challenging process. We investigate the potential of diffusion models in generating diverse human motions guided by keyframes. Unlike previous inbetweening methods, we propose a simple unified model capable of generating precise and diverse motions that conform to a flexible range of user-specified spatial constraints, as well as text conditioning. To this end, we propose Conditional Motion Diffusion In-betweening (CondMDI) which allows for arbitrary dense-or-sparse keyframe placement and partial keyframe constraints while generating high-quality motions that are diverse and coherent with the given keyframes. We evaluate the performance of CondMDI on the text-conditioned HumanML3D dataset and demonstrate the versatility and efficacy of diffusion models for keyframe in-betweening. We further explore the use of guidance and imputation-based approaches for inference-time keyframing and compare CondMDI against these methods.