Goto

Collaborating Authors

 Cogswell, Michael


BloomVQA: Assessing Hierarchical Multi-modal Comprehension

arXiv.org Artificial Intelligence

We propose a novel VQA dataset, based on picture stories designed for educating young children, that aims to facilitate comprehensive evaluation and characterization of vision-language models on comprehension tasks. Unlike current VQA datasets that often focus on fact-based memorization and simple reasoning tasks without principled scientific grounding, we collect data containing tasks reflecting different levels of comprehension and underlying cognitive processes, as laid out in Bloom's Taxonomy, a classic framework widely adopted in education research. The proposed BloomVQA dataset can be mapped to a hierarchical graph-based representation of visual stories, enabling automatic data augmentation and novel measures characterizing model consistency across the underlying taxonomy. We demonstrate graded evaluation and reliability analysis based on our proposed consistency metrics on state-of-the-art vision-language models. Our results suggest that, while current models achieve the most gain on low-level comprehension tasks, they generally fall short on high-level tasks requiring more advanced comprehension and cognitive skills, as 38.0% drop in VQA accuracy is observed comparing lowest and highest level tasks. Furthermore, current models show consistency patterns misaligned with human comprehension in various scenarios, suggesting emergent structures of model behaviors.


A Video is Worth 10,000 Words: Training and Benchmarking with Diverse Captions for Better Long Video Retrieval

arXiv.org Artificial Intelligence

Existing long video retrieval systems are trained and tested in the paragraph-to-video retrieval regime, where every long video is described by a single long paragraph. This neglects the richness and variety of possible valid descriptions of a video, which could be described in moment-by-moment detail, or in a single phrase summary, or anything in between. To provide a more thorough evaluation of the capabilities of long video retrieval systems, we propose a pipeline that leverages state-of-the-art large language models to carefully generate a diverse set of synthetic captions for long videos. We validate this pipeline's fidelity via rigorous human inspection. We then benchmark a representative set of video language models on these synthetic captions using a few long video datasets, showing that they struggle with the transformed data, especially the shortest captions. We also propose a lightweight fine-tuning method, where we use a contrastive loss to learn a hierarchical embedding loss based on the differing levels of information among the various captions. Our method improves performance both on the downstream paragraph-to-video retrieval task (+1.1% R@1 on ActivityNet), as well as for the various long video retrieval metrics we compute using our synthetic data (+3.6% R@1 for short descriptions on ActivityNet). For data access and other details, please refer to our project website at https://mgwillia.github.io/10k-words.


DRESS: Instructing Large Vision-Language Models to Align and Interact with Humans via Natural Language Feedback

arXiv.org Artificial Intelligence

We present DRESS, a large vision language model (LVLM) that innovatively exploits Natural Language feedback (NLF) from Large Language Models to enhance its alignment and interactions by addressing two key limitations in the state-of-the-art LVLMs. First, prior LVLMs generally rely only on the instruction finetuning stage to enhance alignment with human preferences. Without incorporating extra feedback, they are still prone to generate unhelpful, hallucinated, or harmful responses. Second, while the visual instruction tuning data is generally structured in a multi-turn dialogue format, the connections and dependencies among consecutive conversational turns are weak. This reduces the capacity for effective multi-turn interactions. To tackle these, we propose a novel categorization of the NLF into two key types: critique and refinement. The critique NLF identifies the strengths and weaknesses of the responses and is used to align the LVLMs with human preferences. The refinement NLF offers concrete suggestions for improvement and is adopted to improve the interaction ability of the LVLMs-- which focuses on LVLMs' ability to refine responses by incorporating feedback in multi-turn interactions. To address the non-differentiable nature of NLF, we generalize conditional reinforcement learning for training. Our experimental results demonstrate that DRESS can generate more helpful (9.76%), honest (11.52%), and harmless (21.03%) responses, and more effectively learn from feedback during multi-turn interactions compared to SOTA LVMLs.


Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can parse natural queries about the visual content and generate human-like outputs. In this work, we explore the ability of these models to demonstrate human-like reasoning based on the perceived information. To address a crucial concern regarding the extent to which their reasoning capabilities are fully consistent and grounded, we also measure the reasoning consistency of these models. We achieve this by proposing a chain-of-thought (CoT) based consistency measure. However, such an evaluation requires a benchmark that encompasses both high-level inference and detailed reasoning chains, which is costly. We tackle this challenge by proposing a LLM-Human-in-the-Loop pipeline, which notably reduces cost while simultaneously ensuring the generation of a high-quality dataset. Based on this pipeline and the existing coarse-grained annotated dataset, we build the CURE benchmark to measure both the zero-shot reasoning performance and consistency of VLMs. We evaluate existing state-of-the-art VLMs, and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency, indicating that substantial efforts are required to enable VLMs to perform visual reasoning as systematically and consistently as humans. As an early step, we propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs. The first stage involves employing supervised fine-tuning of VLMs using step-by-step reasoning samples automatically generated by LLMs. In the second stage, we further augment the training process by incorporating feedback provided by LLMs to produce reasoning chains that are highly consistent and grounded. We empirically highlight the effectiveness of our framework in both reasoning performance and consistency.


Improving Users' Mental Model with Attention-directed Counterfactual Edits

arXiv.org Artificial Intelligence

In the domain of Visual Question Answering (VQA), studies have shown improvement in users' mental model of the VQA system when they are exposed to examples of how these systems answer certain Image-Question (IQ) pairs. In this work, we show that showing controlled counterfactual image-question examples are more effective at improving the mental model of users as compared to simply showing random examples. We compare a generative approach and a retrieval-based approach to show counterfactual examples. We use recent advances in generative adversarial networks (GANs) to generate counterfactual images by deleting and inpainting certain regions of interest in the image. We then expose users to changes in the VQA system's answer on those altered images. To select the region of interest for inpainting, we experiment with using both human-annotated attention maps and a fully automatic method that uses the VQA system's attention values. Finally, we test the user's mental model by asking them to predict the model's performance on a test counterfactual image. We note an overall improvement in users' accuracy to predict answer change when shown counterfactual explanations. While realistic retrieved counterfactuals obviously are the most effective at improving the mental model, we show that a generative approach can also be equally effective.


Knowing What VQA Does Not: Pointing to Error-Inducing Regions to Improve Explanation Helpfulness

arXiv.org Artificial Intelligence

Attention maps, a popular heatmap-based explanation method for Visual Question Answering (VQA), are supposed to help users understand the model by highlighting portions of the image/question used by the model to infer answers. However, we see that users are often misled by current attention map visualizations that point to relevant regions despite the model producing an incorrect answer. Hence, we propose Error Maps that clarify the error by highlighting image regions where the model is prone to err. Error maps can indicate when a correctly attended region may be processed incorrectly leading to an incorrect answer, and hence, improve users' understanding of those cases. To evaluate our new explanations, we further introduce a metric that simulates users' interpretation of explanations to evaluate their potential helpfulness to understand model correctness. We finally conduct user studies to see that our new explanations help users understand model correctness better than baselines by an expected 30% and that our proxy helpfulness metrics correlate strongly ($\rho$>0.97) with how well users can predict model correctness.


Dialog without Dialog Data: Learning Visual Dialog Agents from VQA Data

arXiv.org Artificial Intelligence

Can we develop visually grounded dialog agents that can efficiently adapt to new tasks without forgetting how to talk to people? Such agents could leverage a larger variety of existing data to generalize to new tasks, minimizing expensive data collection and annotation. In this work, we study a setting we call "Dialog without Dialog", which requires agents to develop visually grounded dialog models that can adapt to new tasks without language level supervision. By factorizing intention and language, our model minimizes linguistic drift after fine-tuning for new tasks. We present qualitative results, automated metrics, and human studies that all show our model can adapt to new tasks and maintain language quality. Baselines either fail to perform well at new tasks or experience language drift, becoming unintelligible to humans. Code has been made available at https://github.com/mcogswell/dialog_without_dialog


Emergence of Compositional Language with Deep Generational Transmission

arXiv.org Artificial Intelligence

Consider a collaborative task that requires communication. Two agents are placed in an environment and must create a language from scratch in order to coordinate. Recent work has been interested in what kinds of languages emerge when deep reinforcement learning agents are put in such a situation, and in particular in the factors that cause language to be compositional-i.e. meaning is expressed by combining words which themselves have meaning. Evolutionary linguists have also studied the emergence of compositional language for decades, and they find that in addition to structural priors like those already studied in deep learning, the dynamics of transmitting language from generation to generation contribute significantly to the emergence of compositionality. In this paper, we introduce these cultural evolutionary dynamics into language emergence by periodically replacing agents in a population to create a knowledge gap, implicitly inducing cultural transmission of language. We show that this implicit cultural transmission encourages the resulting languages to exhibit better compositional generalization and suggest how elements of cultural dynamics can be further integrated into populations of deep agents.


Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models

arXiv.org Artificial Intelligence

Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-right fashion retaining only the top-B candidates - resulting in sequences that differ only slightly from each other. Producing lists of nearly identical sequences is not only computationally wasteful but also typically fails to capture the inherent ambiguity of complex AI tasks. To overcome this problem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a list of diverse outputs by optimizing for a diversity-augmented objective. We observe that our method finds better top-1 solutions by controlling for the exploration and exploitation of the search space - implying that DBS is a better search algorithm. Moreover, these gains are achieved with minimal computational or memory over- head as compared to beam search. To demonstrate the broad applicability of our method, we present results on image captioning, machine translation and visual question generation using both standard quantitative metrics and qualitative human studies. Further, we study the role of diversity for image-grounded language generation tasks as the complexity of the image changes. We observe that our method consistently outperforms BS and previously proposed techniques for diverse decoding from neural sequence models.


Diverse Beam Search for Improved Description of Complex Scenes

AAAI Conferences

A single image captures the appearance and position of multiple entities in a scene as well as their complex interactions. As a consequence, natural language grounded in visual contexts tends to be diverse---with utterances differing as focus shifts to specific objects, interactions, or levels of detail. Recently, neural sequence models such as RNNs and LSTMs have been employed to produce visually-grounded language. Beam Search, the standard work-horse for decoding sequences from these models, is an approximate inference algorithm that decodes the top-B sequences in a greedy left-to-right fashion. In practice, the resulting sequences are often minor rewordings of a common utterance, failing to capture the multimodal nature of source images. To address this shortcoming, we propose Diverse Beam Search (DBS), a diversity promoting alternative to BS for approximate inference. DBS produces sequences that are significantly different from each other by incorporating diversity constraints within groups of candidate sequences during decoding; moreover, it achieves this with minimal computational or memory overhead. We demonstrate that our method improves both diversity and quality of decoded sequences over existing techniques on two visually-grounded language generation tasks---image captioning and visual question generation---particularly on complex scenes containing diverse visual content. We also show similar improvements at language-only machine translation tasks, highlighting the generality of our approach.