Goto

Collaborating Authors

 Cochez, Michael


Do graph neural network states contain graph properties?

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-relational nature of Graph neural networks (GNNs) make it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for well-known structural graph properties. In this paper we present a model agnostic explainability pipeline for GNNs employing diagnostic classifiers. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.


Explaining Graph Neural Networks for Node Similarity on Graphs

arXiv.org Artificial Intelligence

Similarity search is a fundamental task for exploiting information in various applications dealing with graph data, such as citation networks or knowledge graphs. While this task has been intensively approached from heuristics to graph embeddings and graph neural networks (GNNs), providing explanations for similarity has received less attention. In this work we are concerned with explainable similarity search over graphs, by investigating how GNN-based methods for computing node similarities can be augmented with explanations. Specifically, we evaluate the performance of two prominent approaches towards explanations in GNNs, based on the concepts of mutual information (MI), and gradient-based explanations (GB). We discuss their suitability and empirically validate the properties of their explanations over different popular graph benchmarks. We find that unlike MI explanations, gradient-based explanations have three desirable properties. First, they are actionable: selecting inputs depending on them results in predictable changes in similarity scores. Second, they are consistent: the effect of selecting certain inputs overlaps very little with the effect of discarding them. Third, they can be pruned significantly to obtain sparse explanations that retain the effect on similarity scores.


GNN2R: Weakly-Supervised Rationale-Providing Question Answering over Knowledge Graphs

arXiv.org Artificial Intelligence

Most current methods for multi-hop question answering (QA) over knowledge graphs (KGs) only provide final conclusive answers without explanations, such as a set of KG entities that is difficult for normal users to review and comprehend. This issue severely limits the application of KG-based QA in real-world scenarios. However, it is non-trivial to solve due to two challenges: First, annotations of reasoning chains of multi-hop questions, which could serve as supervision for explanation generation, are usually lacking. Second, it is difficult to maintain high efficiency when explicit KG triples need to be retrieved to generate explanations. In this paper, we propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to solve this issue. GNN2R can provide both final answers and reasoning subgraphs as a rationale behind final answers efficiently with only weak supervision that is available through question-final answer pairs. We extensively evaluated GNN2R with detailed analyses in experiments. The results demonstrate that, in terms of effectiveness, efficiency, and quality of generated explanations, GNN2R outperforms existing state-of-the-art methods that are applicable to this task. Our code and pre-trained models are available at https://github.com/ruijie-wang-uzh/GNN2R.


QAGCN: Answering Multi-Relation Questions via Single-Step Implicit Reasoning over Knowledge Graphs

arXiv.org Artificial Intelligence

Multi-relation question answering (QA) is a challenging task, where given questions usually require long reasoning chains in KGs that consist of multiple relations. Recently, methods with explicit multi-step reasoning over KGs have been prominently used in this task and have demonstrated promising performance. Examples include methods that perform stepwise label propagation through KG triples and methods that navigate over KG triples based on reinforcement learning. A main weakness of these methods is that their reasoning mechanisms are usually complex and difficult to implement or train. In this paper, we argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning, which is simpler, more efficient, and easier to adopt. We propose QAGCN -- a Question-Aware Graph Convolutional Network (GCN)-based method that includes a novel GCN architecture with controlled question-dependent message propagation for the implicit reasoning. Extensive experiments have been conducted, where QAGCN achieved competitive and even superior performance compared to state-of-the-art explicit-reasoning methods.


DONUT-hole: DONUT Sparsification by Harnessing Knowledge and Optimizing Learning Efficiency

arXiv.org Artificial Intelligence

This paper introduces DONUT-hole, a sparse OCR-free visual document understanding (VDU) model that addresses the limitations of its predecessor model, dubbed DONUT. The DONUT model, leveraging a transformer architecture, overcoming the challenges of separate optical character recognition (OCR) and visual semantic understanding (VSU) components. However, its deployment in production environments and edge devices is hindered by high memory and computational demands, particularly in large-scale request services. To overcome these challenges, we propose an optimization strategy based on knowledge distillation and model pruning. Our paradigm to produce DONUT-hole, reduces the model denisty by 54\% while preserving performance. We also achieve a global representational similarity index between DONUT and DONUT-hole based on centered kernel alignment (CKA) metric of 0.79. Moreover, we evaluate the effectiveness of DONUT-hole in the document image key information extraction (KIE) task, highlighting its potential for developing more efficient VDU systems for logistic companies.


Approximate Answering of Graph Queries

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) are inherently incomplete because of incomplete world knowledge and bias in what is the input to the KG. Additionally, world knowledge constantly expands and evolves, making existing facts deprecated or introducing new ones. However, we would still want to be able to answer queries as if the graph were complete. In this chapter, we will give an overview of several methods which have been proposed to answer queries in such a setting. We will first provide an overview of the different query types which can be supported by these methods and datasets typically used for evaluation, as well as an insight into their limitations. Then, we give an overview of the different approaches and describe them in terms of expressiveness, supported graph types, and inference capabilities.


Adapting Neural Link Predictors for Data-Efficient Complex Query Answering

arXiv.org Artificial Intelligence

Answering complex queries on incomplete knowledge graphs is a challenging task where a model needs to answer complex logical queries in the presence of missing knowledge. Prior work in the literature has proposed to address this problem by designing architectures trained end-to-end for the complex query answering task with a reasoning process that is hard to interpret while requiring data and resource-intensive training. Other lines of research have proposed re-using simple neural link predictors to answer complex queries, reducing the amount of training data by orders of magnitude while providing interpretable answers. The neural link predictor used in such approaches is not explicitly optimised for the complex query answering task, implying that its scores are not calibrated to interact together. We propose to address these problems via CQD$^{\mathcal{A}}$, a parameter-efficient score \emph{adaptation} model optimised to re-calibrate neural link prediction scores for the complex query answering task. While the neural link predictor is frozen, the adaptation component -- which only increases the number of model parameters by $0.03\%$ -- is trained on the downstream complex query answering task. Furthermore, the calibration component enables us to support reasoning over queries that include atomic negations, which was previously impossible with link predictors. In our experiments, CQD$^{\mathcal{A}}$ produces significantly more accurate results than current state-of-the-art methods, improving from $34.4$ to $35.1$ Mean Reciprocal Rank values averaged across all datasets and query types while using $\leq 30\%$ of the available training query types. We further show that CQD$^{\mathcal{A}}$ is data-efficient, achieving competitive results with only $1\%$ of the training complex queries, and robust in out-of-domain evaluations.


A Machine with Short-Term, Episodic, and Semantic Memory Systems

arXiv.org Artificial Intelligence

Inspired by the cognitive science theory of the explicit human memory systems, we have modeled an agent with short-term, episodic, and semantic memory systems, each of which is modeled with a knowledge graph. To evaluate this system and analyze the behavior of this agent, we designed and released our own reinforcement learning agent environment, "the Room", where an agent has to learn how to encode, store, and retrieve memories to maximize its return by answering questions. We show that our deep Q-learning based agent successfully learns whether a short-term memory should be forgotten, or rather be stored in the episodic or semantic memory systems. Our experiments indicate that an agent with human-like memory systems can outperform an agent without this memory structure in the environment.


Prompting as Probing: Using Language Models for Knowledge Base Construction

arXiv.org Artificial Intelligence

Language Models (LMs) have proven to be useful in various downstream applications, such as summarisation, translation, question answering and text classification. LMs are becoming increasingly important tools in Artificial Intelligence, because of the vast quantity of information they can store. In this work, we present ProP (Prompting as Probing), which utilizes GPT-3, a large Language Model originally proposed by OpenAI in 2020, to perform the task of Knowledge Base Construction (KBC). ProP implements a multi-step approach that combines a variety of prompting techniques to achieve this. Our results show that manual prompt curation is essential, that the LM must be encouraged to give answer sets of variable lengths, in particular including empty answer sets, that true/false questions are a useful device to increase precision on suggestions generated by the LM, that the size of the LM is a crucial factor, and that a dictionary of entity aliases improves the LM score. Our evaluation study indicates that these proposed techniques can substantially enhance the quality of the final predictions: ProP won track 2 of the LM-KBC competition, outperforming the baseline by 36.4 percentage points.


BioBLP: A Modular Framework for Learning on Multimodal Biomedical Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) are an important tool for representing complex relationships between entities in the biomedical domain. Several methods have been proposed for learning embeddings that can be used to predict new links in such graphs. Some methods ignore valuable attribute data associated with entities in biomedical KGs, such as protein sequences, or molecular graphs. Other works incorporate such data, but assume that entities can be represented with the same data modality. This is not always the case for biomedical KGs, where entities exhibit heterogeneous modalities that are central to their representation in the subject domain. We propose a modular framework for learning embeddings in KGs with entity attributes, that allows encoding attribute data of different modalities while also supporting entities with missing attributes. We additionally propose an efficient pretraining strategy for reducing the required training runtime. We train models using a biomedical KG containing approximately 2 million triples, and evaluate the performance of the resulting entity embeddings on the tasks of link prediction, and drug-protein interaction prediction, comparing against methods that do not take attribute data into account. In the standard link prediction evaluation, the proposed method results in competitive, yet lower performance than baselines that do not use attribute data. When evaluated in the task of drug-protein interaction prediction, the method compares favorably with the baselines. We find settings involving low degree entities, which make up for a substantial amount of the set of entities in the KG, where our method outperforms the baselines. Our proposed pretraining strategy yields significantly higher performance while reducing the required training runtime. Our implementation is available at https://github.com/elsevier-AI-Lab/BioBLP .