Goto

Collaborating Authors

 Coates, Mark


Graph Knowledge Distillation to Mixture of Experts

arXiv.org Machine Learning

In terms of accuracy, Graph Neural Networks (GNNs) are the best architectural choice for the node classification task. Their drawback in real-world deployment is the latency that emerges from the neighbourhood processing operation. One solution to the latency issue is to perform knowledge distillation from a trained GNN to a Multi-Layer Perceptron (MLP), where the MLP processes only the features of the node being classified (and possibly some pre-computed structural information). However, the performance of such MLPs in both transductive and inductive settings remains inconsistent for existing knowledge distillation techniques. We propose to address the performance concerns by using a specially-designed student model instead of an MLP. Our model, named Routing-by-Memory (RbM), is a form of Mixture-of-Experts (MoE), with a design that enforces expert specialization. By encouraging each expert to specialize on a certain region on the hidden representation space, we demonstrate experimentally that it is possible to derive considerably more consistent performance across multiple datasets.


CKGConv: General Graph Convolution with Continuous Kernels

arXiv.org Artificial Intelligence

The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a general convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits a stronger expressiveness, as powerful as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets. The code and models are publicly available at https://github.com/networkslab/CKGConv.


MODL: Multilearner Online Deep Learning

arXiv.org Artificial Intelligence

Online deep learning solves the problem of learning from streams of data, reconciling two opposing objectives: learn fast and learn deep. Existing work focuses almost exclusively on exploring pure deep learning solutions, which are much better suited to handle the "deep" than the "fast" part of the online learning equation. In our work, we propose a different paradigm, based on a hybrid multilearner approach. First, we develop a fast online logistic regression learner. This learner does not rely on backpropagation. Instead, it uses closed form recursive updates of model parameters, handling the fast learning part of the online learning problem. We then analyze the existing online deep learning theory and show that the widespread ODL approach, currently operating at complexity $O(L^2)$ in terms of the number of layers $L$, can be equivalently implemented in $O(L)$ complexity. This further leads us to the cascaded multilearner design, in which multiple shallow and deep learners are co-trained to solve the online learning problem in a cooperative, synergistic fashion. We show that this approach achieves state-of-the-art results on common online learning datasets, while also being able to handle missing features gracefully. Our code is publicly available at https://github.com/AntonValk/MODL.


GraSS: Combining Graph Neural Networks with Expert Knowledge for SAT Solver Selection

arXiv.org Artificial Intelligence

Boolean satisfiability (SAT) problems are routinely solved by SAT solvers in real-life applications, yet solving time can vary drastically between solvers for the same instance. This has motivated research into machine learning models that can predict, for a given SAT instance, which solver to select among several options. Existing SAT solver selection methods all rely on some hand-picked instance features, which are costly to compute and ignore the structural information in SAT graphs. In this paper we present GraSS, a novel approach for automatic SAT solver selection based on tripartite graph representations of instances and a heterogeneous graph neural network (GNN) model. While GNNs have been previously adopted in other SAT-related tasks, they do not incorporate any domain-specific knowledge and ignore the runtime variation introduced by different clause orders. We enrich the graph representation with domain-specific decisions, such as novel node feature design, positional encodings for clauses in the graph, a GNN architecture tailored to our tripartite graphs and a runtime-sensitive loss function. Through extensive experiments, we demonstrate that this combination of raw representations and domain-specific choices leads to improvements in runtime for a pool of seven state-of-the-art solvers on both an industrial circuit design benchmark, and on instances from the 20-year Anniversary Track of the 2022 SAT Competition.


Personalized Negative Reservoir for Incremental Learning in Recommender Systems

arXiv.org Artificial Intelligence

Recommender systems have become an integral part of online platforms. Every day the volume of training data is expanding and the number of user interactions is constantly increasing. The exploration of larger and more expressive models has become a necessary pursuit to improve user experience. However, this progression carries with it an increased computational burden. In commercial settings, once a recommendation system model has been trained and deployed it typically needs to be updated frequently as new client data arrive. Cumulatively, the mounting volume of data is guaranteed to eventually make full batch retraining of the model from scratch computationally infeasible. Naively fine-tuning solely on the new data runs into the well-documented problem of catastrophic forgetting. Despite the fact that negative sampling is a crucial part of training with implicit feedback, no specialized technique exists that is tailored to the incremental learning framework. In this work, we take the first step to propose, a personalized negative reservoir strategy which is used to obtain negative samples for the standard triplet loss. This technique balances alleviation of forgetting with plasticity by encouraging the model to remember stable user preferences and selectively forget when user interests change. We derive the mathematical formulation of a negative sampler to populate and update the reservoir. We integrate our design in three SOTA and commonly used incremental recommendation models. We show that these concrete realizations of our negative reservoir framework achieve state-of-the-art results in standard benchmarks, on multiple standard top-k evaluation metrics.


DyG2Vec: Efficient Representation Learning for Dynamic Graphs

arXiv.org Artificial Intelligence

Temporal graph neural networks have shown promising results in learning inductive representations by automatically extracting temporal patterns. However, previous works often rely on complex memory modules or inefficient random walk methods to construct temporal representations. To address these limitations, we present an efficient yet effective attention-based encoder that leverages temporal edge encodings and window-based subgraph sampling to generate task-agnostic embeddings. Moreover, we propose a joint-embedding architecture using non-contrastive SSL to learn rich temporal embeddings without labels. Experimental results on 7 benchmark datasets indicate that on average, our model outperforms SoTA baselines on the future link prediction task by 4.23% for the transductive setting and 3.30% for the inductive setting while only requiring 5-10x less training/inference time. Lastly, different aspects of the proposed framework are investigated through experimental analysis and ablation studies. The code is publicly available at https://github.com/huawei-noah/noah-research/tree/master/graph_atlas.


Multi-resolution Time-Series Transformer for Long-term Forecasting

arXiv.org Artificial Intelligence

The performance of transformers for time-series forecasting has improved significantly. Recent architectures learn complex temporal patterns by segmenting a time-series into patches and using the patches as tokens. The patch size controls the ability of transformers to learn the temporal patterns at different frequencies: shorter patches are effective for learning localized, high-frequency patterns, whereas mining long-term seasonalities and trends requires longer patches. Inspired by this observation, we propose a novel framework, Multi-resolution Time-Series Transformer (MTST), which consists of a multi-branch architecture for simultaneous modeling of diverse temporal patterns at different resolutions. In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales. Extensive experiments on several real-world datasets demonstrate the effectiveness of MTST in comparison to state-of-the-art forecasting techniques.


Interacting Diffusion Processes for Event Sequence Forecasting

arXiv.org Artificial Intelligence

Neural Temporal Point Processes (TPPs) have emerged as the primary framework for predicting sequences of events that occur at irregular time intervals, but their sequential nature can hamper performance for long-horizon forecasts. To address this, we introduce a novel approach that incorporates a diffusion generative model. The model facilitates sequence-to-sequence prediction, allowing multi-step predictions based on historical event sequences. In contrast to previous approaches, our model directly learns the joint probability distribution of types and inter-arrival times for multiple events. This allows us to fully leverage the high dimensional modeling capability of modern generative models. Our model is composed of two diffusion processes, one for the time intervals and one for the event types. These processes interact through their respective denoising functions, which can take as input intermediate representations from both processes, allowing the model to learn complex interactions. We demonstrate that our proposal outperforms state-of-the-art baselines for long-horizon forecasting of TPP.


Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

arXiv.org Artificial Intelligence

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities. The dominant approach to improve machine learning models is to develop larger networks that can handle every potential sample. As a result, despite very impressive performance, the resource overhead is huge (Scao et al., 2023). The push for larger model size is often driven by the need to handle a small percentage of samples that are particularly challenging to infer (Bolukbasi et al., 2017); most inferences do not need the full power of a large network to be successfully executed. Nonetheless, most traditional neural network (NN) models have a fixed processing pipeline. This means that every sample, simple or complex, is processed the same way. To tackle this inefficiency, dynamic networks have been introduced (see (Han et al., 2022a) for a review).


Substituting Data Annotation with Balanced Updates and Collective Loss in Multi-label Text Classification

arXiv.org Artificial Intelligence

Multi-label text classification (MLTC) is the task of assigning multiple labels to a given text, and has a wide range of application domains. Most existing approaches require an enormous amount of annotated data to learn a classifier and/or a set of well-defined constraints on the label space structure, such as hierarchical relations which may be complicated to provide as the number of labels increases. In this paper, we study the MLTC problem in annotation-free and scarce-annotation settings in which the magnitude of available supervision signals is linear to the number of labels. Our method follows three steps, (1) mapping input text into a set of preliminary label likelihoods by natural language inference using a pre-trained language model, (2) calculating a signed label dependency graph by label descriptions, and (3) updating the preliminary label likelihoods with message passing along the label dependency graph, driven with a collective loss function that injects the information of expected label frequency and average multi-label cardinality of predictions. The experiments show that the proposed framework achieves effective performance under low supervision settings with almost imperceptible computational and memory overheads added to the usage of pre-trained language model outperforming its initial performance by 70\% in terms of example-based F1 score.