Goto

Collaborating Authors

 Cloninger, Alexander


Robust Graph-Based Semi-Supervised Learning via $p$-Conductances

arXiv.org Artificial Intelligence

We study the problem of semi-supervised learning on graphs in the regime where data labels are scarce or possibly corrupted. We propose an approach called $p$-conductance learning that generalizes the $p$-Laplace and Poisson learning methods by introducing an objective reminiscent of $p$-Laplacian regularization and an affine relaxation of the label constraints. This leads to a family of probability measure mincut programs that balance sparse edge removal with accurate distribution separation. Our theoretical analysis connects these programs to well-known variational and probabilistic problems on graphs (including randomized cuts, effective resistance, and Wasserstein distance) and provides motivation for robustness when labels are diffused via the heat kernel. Computationally, we develop a semismooth Newton-conjugate gradient algorithm and extend it to incorporate class-size estimates when converting the continuous solutions into label assignments. Empirical results on computer vision and citation datasets demonstrate that our approach achieves state-of-the-art accuracy in low label-rate, corrupted-label, and partial-label regimes.


Linearized Optimal Transport pyLOT Library: A Toolkit for Machine Learning on Point Clouds

arXiv.org Machine Learning

Instead, point clouds or continuous probability measures are the appropriate data structures. These data arise naturally in fields such as computer vision, image processing, shape analysis, and generative modeling, where representing complex objects as probability distributions provides a richer and more flexible framework for analysis. Real-world examples include text documents with bag-of-words models treating word counts as features, which forms a histogram for each document [35], imaging data where pixel intensity is interpreted as mass [26] and results in 2D discrete probability measures over the image grid, and gene expression data that is interpretted as a distribution across a gene network [8, 15]. Optimal transport (OT) theory [30] has recently emerged as a powerful tool to compare probability measures. Qualitatively, OT generates a distance metric between probability measures by minimizing the work needed to move one distribution into another over all transport plans. It has gained significant popularity for applications [4, 26, 27] involving point clouds and probability distributions. OT allows for the computation of distances between distributions by solving a minimization problem over transportation plans. Despite its theoretical elegance and its ability to capture geometric properties of distributions, using vanilla OT is computationally expensive and does not directly integrate into existing machine learning pipelines. For this reason, OT has been somewhat limited in practical applications, particularly in settings that demand scalable and efficient algorithms for tasks such as classification, dimension reduction, and generation.


Training Guarantees of Neural Network Classification Two-Sample Tests by Kernel Analysis

arXiv.org Machine Learning

We construct and analyze a neural network two-sample test to determine whether two datasets came from the same distribution (null hypothesis) or not (alternative hypothesis). We perform time-analysis on a neural tangent kernel (NTK) two-sample test. In particular, we derive the theoretical minimum training time needed to ensure the NTK two-sample test detects a deviation-level between the datasets. Similarly, we derive the theoretical maximum training time before the NTK two-sample test detects a deviation-level. By approximating the neural network dynamics with the NTK dynamics, we extend this time-analysis to the realistic neural network two-sample test generated from time-varying training dynamics and finite training samples. A similar extension is done for the neural network two-sample test generated from time-varying training dynamics but trained on the population. To give statistical guarantees, we show that the statistical power associated with the neural network two-sample test goes to 1 as the neural network training samples and test evaluation samples go to infinity. Additionally, we prove that the training times needed to detect the same deviation-level in the null and alternative hypothesis scenarios are well-separated. Finally, we run some experiments showcasing a two-layer neural network two-sample test on a hard two-sample test problem and plot a heatmap of the statistical power of the two-sample test in relation to training time and network complexity.


All You Need is Resistance: On the Equivalence of Effective Resistance and Certain Optimal Transport Problems on Graphs

arXiv.org Artificial Intelligence

The fields of effective resistance and optimal transport on graphs are filled with rich connections to combinatorics, geometry, machine learning, and beyond. In this article we put forth a bold claim: that the two fields should be understood as one and the same, up to a choice of $p$. We make this claim precise by introducing the parameterized family of $p$-Beckmann distances for probability measures on graphs and relate them sharply to certain Wasserstein distances. Then, we break open a suite of results including explicit connections to optimal stopping times and random walks on graphs, graph Sobolev spaces, and a Benamou-Brenier type formula for $2$-Beckmann distance. We further explore empirical implications in the world of unsupervised learning for graph data and propose further study of the usage of these metrics where Wasserstein distance may produce computational bottlenecks.


Semi-Supervised Laplacian Learning on Stiefel Manifolds

arXiv.org Artificial Intelligence

Motivated by the need to address the degeneracy of canonical Laplace learning algorithms in low label rates, we propose to reformulate graph-based semi-supervised learning as a nonconvex generalization of a \emph{Trust-Region Subproblem} (TRS). This reformulation is motivated by the well-posedness of Laplacian eigenvectors in the limit of infinite unlabeled data. To solve this problem, we first show that a first-order condition implies the solution of a manifold alignment problem and that solutions to the classical \emph{Orthogonal Procrustes} problem can be used to efficiently find good classifiers that are amenable to further refinement. Next, we address the criticality of selecting supervised samples at low-label rates. We characterize informative samples with a novel measure of centrality derived from the principal eigenvectors of a certain submatrix of the graph Laplacian. We demonstrate that our framework achieves lower classification error compared to recent state-of-the-art and classical semi-supervised learning methods at extremely low, medium, and high label rates. Our code is available on github\footnote{anonymized for submission}.


Effective resistance in metric spaces

arXiv.org Artificial Intelligence

Effective resistance (ER) is an attractive way to interrogate the structure of graphs. It is an alternative to computing the eigenvectors of the graph Laplacian. One attractive application of ER is to point clouds, i.e. graphs whose vertices correspond to IID samples from a distribution over a metric space. Unfortunately, it was shown that the ER between any two points converges to a trivial quantity that holds no information about the graph's structure as the size of the sample increases to infinity. In this study, we show that this trivial solution can be circumvented by considering a region-based ER between pairs of small regions rather than pairs of points and by scaling the edge weights appropriately with respect to the underlying density in each region. By keeping the regions fixed, we show analytically that the region-based ER converges to a non-trivial limit as the number of points increases to infinity. Namely the ER on a metric space. We support our theoretical findings with numerical experiments.


Linearized Wasserstein dimensionality reduction with approximation guarantees

arXiv.org Artificial Intelligence

We introduce LOT Wassmap, a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space. The algorithm is motivated by the observation that many datasets are naturally interpreted as probability measures rather than points in $\mathbb{R}^n$, and that finding low-dimensional descriptions of such datasets requires manifold learning algorithms in the Wasserstein space. Most available algorithms are based on computing the pairwise Wasserstein distance matrix, which can be computationally challenging for large datasets in high dimensions. Our algorithm leverages approximation schemes such as Sinkhorn distances and linearized optimal transport to speed-up computations, and in particular, avoids computing a pairwise distance matrix. We provide guarantees on the embedding quality under such approximations, including when explicit descriptions of the probability measures are not available and one must deal with finite samples instead. Experiments demonstrate that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size. We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.


Supervised learning of sheared distributions using linearized optimal transport

arXiv.org Machine Learning

In this paper we study supervised learning tasks on the space of probability measures. We approach this problem by embedding the space of probability measures into $L^2$ spaces using the optimal transport framework. In the embedding spaces, regular machine learning techniques are used to achieve linear separability. This idea has proved successful in applications and when the classes to be separated are generated by shifts and scalings of a fixed measure. This paper extends the class of elementary transformations suitable for the framework to families of shearings, describing conditions under which two classes of sheared distributions can be linearly separated. We furthermore give necessary bounds on the transformations to achieve a pre-specified separation level, and show how multiple embeddings can be used to allow for larger families of transformations. We demonstrate our results on image classification tasks.


Kernel distance measures for time series, random fields and other structured data

arXiv.org Machine Learning

This paper introduces kdiff, a novel kernel-based measure for estimating distances between instances of time series, random fields and other forms of structured data. This measure is based on the idea of matching distributions that only overlap over a portion of their region of support. Our proposed measure is inspired by MPdist which has been previously proposed for such datasets and is constructed using Euclidean metrics, whereas kdiff is constructed using non-linear kernel distances. Also, kdiff accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution. Comparing the cross similarity to self similarity allows for measures of similarity that are more robust to noise and partial occlusions of the relevant signals. Our proposed measure kdiff is a more general form of the well known kernel-based Maximum Mean Discrepancy (MMD) distance estimated over the embeddings. Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems where the embedding distributions can be modeled as two component mixtures. Applications are demonstrated for clustering of synthetic and real-life time series and image data, and the performance of kdiff is compared to competing distance measures for clustering.


StreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm

arXiv.org Machine Learning

Kernel ridge regression (KRR) is a popular scheme for non-linear non-parametric learning. However, existing implementations of KRR require that all the data is stored in the main memory, which severely limits the use of KRR in contexts where data size far exceeds the memory size. Such applications are increasingly common in data mining, bioinformatics, and control. A powerful paradigm for computing on data sets that are too large for memory is the streaming model of computation, where we process one data sample at a time, discarding each sample before moving on to the next one. In this paper, we propose StreaMRAK - a streaming version of KRR. StreaMRAK improves on existing KRR schemes by dividing the problem into several levels of resolution, which allows continual refinement to the predictions. The algorithm reduces the memory requirement by continuously and efficiently integrating new samples into the training model. With a novel sub-sampling scheme, StreaMRAK reduces memory and computational complexities by creating a sketch of the original data, where the sub-sampling density is adapted to the bandwidth of the kernel and the local dimensionality of the data. We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum. The results show that the proposed algorithm is fast and accurate.