Clarke, Charles
Rumour Evaluation with Very Large Language Models
Shehata, Dahlia, Cohen, Robin, Clarke, Charles
Conversational prompt-engineering-based large language models (LLMs) have enabled targeted control over the output creation, enhancing versatility, adaptability and adhoc retrieval. From another perspective, digital misinformation has reached alarming levels. The anonymity, availability and reach of social media offer fertile ground for rumours to propagate. This work proposes to leverage the advancement of prompting-dependent LLMs to combat misinformation by extending the research efforts of the RumourEval task on its Twitter dataset. To the end, we employ two prompting-based LLM variants (GPT-3.5-turbo and GPT-4) to extend the two RumourEval subtasks: (1) veracity prediction, and (2) stance classification. For veracity prediction, three classifications schemes are experimented per GPT variant. Each scheme is tested in zero-, one- and few-shot settings. Our best results outperform the precedent ones by a substantial margin. For stance classification, prompting-based-approaches show comparable performance to prior results, with no improvement over finetuning methods. Rumour stance subtask is also extended beyond the original setting to allow multiclass classification. All of the generated predictions for both subtasks are equipped with confidence scores determining their trustworthiness degree according to the LLM, and post-hoc justifications for explainability and interpretability purposes. Our primary aim is AI for social good.
Towards better Human-Agent Alignment: Assessing Task Utility in LLM-Powered Applications
Arabzadeh, Negar, Kiseleva, Julia, Wu, Qingyun, Wang, Chi, Awadallah, Ahmed, Dibia, Victor, Fourney, Adam, Clarke, Charles
The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks. However, a significant gap remains in assessing whether LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the pressing need for methods to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval provides an implementation for the math problems, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the robustness of quantifier's work.