Clark, Ronald
Ivy: Templated Deep Learning for Inter-Framework Portability
Lenton, Daniel, Pardo, Fabio, Falck, Fabian, James, Stephen, Clark, Ronald
We introduce Ivy, a templated Deep Learning (DL) framework which abstracts existing DL frameworks such that their core functions all exhibit consistent call signatures, syntax and input-output behaviour. Ivy allows high-level framework-agnostic functions to be implemented through the use of framework templates. The framework templates act as placeholders for the specific framework at development time, which are then determined at runtime. The portability of Ivy functions enables their use in projects of any supported framework. Ivy currently supports TensorFlow, PyTorch, MXNet, Jax and NumPy. Alongside Ivy, we release four pure-Ivy libraries for mechanics, 3D vision, robotics, and differentiable environments. Through our evaluations, we show that Ivy can significantly reduce lines of code with a runtime overhead of less than 1% in most cases. We welcome developers to join the Ivy community by writing their own functions, layers and libraries in Ivy, maximizing their audience and helping to accelerate DL research through the creation of lifelong inter-framework codebases. More information can be found at https://ivy-dl.org.
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Lin, Shuyu, Roberts, Stephen, Trigoni, Niki, Clark, Ronald
A trade-off exists between reconstruction quality and the prior regularisation in the Evidence Lower Bound (ELBO) loss that Variational Autoencoder (VAE) models use for learning. There are few satisfactory approaches to deal with a balance between the prior and reconstruction objective, with most methods dealing with this problem through heuristics. In this paper, we show that the noise variance (often set as a fixed value) in the Gaussian likelihood p(x|z) for real-valued data can naturally act to provide such a balance. By learning this noise variance so as to maximise the ELBO loss, we automatically obtain an optimal trade-off between the reconstruction error and the prior constraint on the posteriors. This variance can be interpreted intuitively as the necessary noise level for the current model to be the best explanation of the observed dataset. Further, by allowing the variance inference to be more flexible it can conveniently be used as an uncertainty estimator for reconstructed or generated samples. We demonstrate that optimising the noise variance is a crucial component of VAE learning, and showcase the performance on MNIST, Fashion MNIST and CelebA datasets. We find our approach can significantly improve the quality of generated samples whilst maintaining a smooth latent-space manifold to represent the data. The method also offers an indication of uncertainty in the final generative model.
Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
Yang, Bo, Wang, Jianan, Clark, Ronald, Hu, Qingyong, Wang, Sen, Markham, Andrew, Trigoni, Niki
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses 3D bounding boxes for all instances in a point cloud, while simultaneously predicting a point-level mask for each instance. It consists of a backbone network followed by two parallel network branches for 1) bounding box regression and 2) point mask prediction. 3D-BoNet is single-stage, anchor-free and end-to-end trainable. Moreover, it is remarkably computationally efficient as, unlike existing approaches, it does not require any post-processing steps such as non-maximum suppression, feature sampling, clustering or voting. Extensive experiments show that our approach surpasses existing work on both ScanNet and S3DIS datasets while being approximately 10x more computationally efficient. Comprehensive ablation studies demonstrate the effectiveness of our design.
WiSE-VAE: Wide Sample Estimator VAE
Lin, Shuyu, Clark, Ronald, Birke, Robert, Trigoni, Niki, Roberts, Stephen
Variational Auto-encoders (VAEs) have been very successful as methods for forming compressed latent representations of complex, often high-dimensional, data. In this paper, we derive an alternative variational lower bound from the one common in VAEs, which aims to minimize aggregate information loss. Using our lower bound as the objective function for an auto-encoder enables us to place a prior on the bulk statistics, corresponding to an aggregate posterior of all latent codes, as opposed to a single code posterior as in the original VAE. This alternative form of prior constraint allows individual posteriors more flexibility to preserve necessary information for good reconstruction quality. We further derive an analytic approximation to our lower bound, leading to our proposed model - WiSE-VAE. Through various examples, we demonstrate that WiSE-VAE can reach excellent reconstruction quality in comparison to other state-of-the-art VAE models, while still retaining the ability to learn a smooth, compact representation.
InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset
Li, Wenbin, Saeedi, Sajad, McCormac, John, Clark, Ronald, Tzoumanikas, Dimos, Ye, Qing, Huang, Yuzhong, Tang, Rui, Leutenegger, Stefan
Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms.
VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem
Clark, Ronald (University of Oxford) | Wang, Sen (University of Oxford) | Wen, Hongkai (University of Oxford) | Markham, Andrew (University of Oxford) | Trigoni, Niki (University of Oxford)
In this paper we present an on-manifold sequence-to-sequence learning approach to motion estimation using visual and inertial sensors. It is to the best of our knowledge the first end-to-end trainable method for visual-inertial odometry which performs fusion of the data at an intermediate feature-representation level. Our method has numerous advantages over traditional approaches. Specifically, it eliminates the need for tedious manual synchronization of the camera and IMU as well as eliminating the need for manual calibration between the IMU and camera. A further advantage is that our model naturally and elegantly incorporates domain specific information which significantly mitigates drift. We show that our approach is competitive with state-of-the-art traditional methods when accurate calibration data is available and can be trained to outperform them in the presence of calibration and synchronization errors.