Civera, Javier
S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
Bavle, Hriday, Sanchez-Lopez, Jose Luis, Shaheer, Muhammad, Civera, Javier, Voos, Holger
The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
Look Ma, No Ground Truth! Ground-Truth-Free Tuning of Structure from Motion and Visual SLAM
Fontan, Alejandro, Civera, Javier, Fischer, Tobias, Milford, Michael
Evaluation is critical to both developing and tuning Structure from Motion (SfM) and Visual SLAM (VSLAM) systems, but is universally reliant on high-quality geometric ground truth -- a resource that is not only costly and time-intensive but, in many cases, entirely unobtainable. This dependency on ground truth restricts SfM and SLAM applications across diverse environments and limits scalability to real-world scenarios. In this work, we propose a novel ground-truth-free (GTF) evaluation methodology that eliminates the need for geometric ground truth, instead using sensitivity estimation via sampling from both original and noisy versions of input images. Our approach shows strong correlation with traditional ground-truth-based benchmarks and supports GTF hyperparameter tuning. Removing the need for ground truth opens up new opportunities to leverage a much larger number of dataset sources, and for self-supervised and online tuning, with the potential for a data-driven breakthrough analogous to what has occurred in generative AI.
OVO-SLAM: Open-Vocabulary Online Simultaneous Localization and Mapping
Martins, Tomas Berriel, Oswald, Martin R., Civera, Javier
This paper presents the first Open-Vocabulary Online 3D semantic SLAM pipeline, that we denote as OVO-SLAM. Our primary contribution is in the pipeline itself, particularly in the mapping thread. Given a set of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors, calculated through a novel aggregation from the viewpoints where these 3D segments are observed. Notably, our OVO-SLAM pipeline is not only faster but also achieves better segmentation metrics compared to offline approaches in the literature. Along with superior segmentation performance, we show experimental results of our contributions integrated with Gaussian-SLAM, being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
Unifying Local and Global Multimodal Features for Place Recognition in Aliased and Low-Texture Environments
García-Hernández, Alberto, Giubilato, Riccardo, Strobl, Klaus H., Civera, Javier, Triebel, Rudolph
Abstract-- Perceptual aliasing and weak textures pose significant challenges to the task of place recognition, hindering the performance of Simultaneous Localization and Mapping (SLAM) systems. This paper presents a novel model, called UMF (standing for Unifying Local and Global Multimodal Features) that 1) leverages multi-modality by crossattention blocks between vision and LiDAR features, and 2) includes a re-ranking stage that re-orders based on local feature matching the top-k candidates retrieved using a global representation. UMF outperforms significantly previous baselines in those challenging aliased environments. Simultaneous Localization and Mapping (SLAM) has emerged as a central technology in a multitude of industries In this paper we propose a novel multimodal place recognition including autonomous driving [1], [2], automated method that we denote as UMF, standing for Unifying construction [3], and agriculture [4], [5]. Our model leverages and adoption have been accelerated by advancements in deep local and global features from visual and LiDAR data, sensor technologies, including multi-camera setups, RGB-D fusing both modalities via cross-attention mechanisms.
PCR-99: A Practical Method for Point Cloud Registration with 99% Outliers
Lee, Seong Hun, Civera, Javier, Vandewalle, Patrick
We propose a robust method for point cloud registration that can handle both unknown scales and extreme outlier ratios. Our method, dubbed PCR-99, uses a deterministic 3-point sampling approach with two novel mechanisms that significantly boost the speed: (1) an improved ordering of the samples based on pairwise scale consistency, prioritizing the point correspondences that are more likely to be inliers, and (2) an efficient outlier rejection scheme based on triplet scale consistency, prescreening bad samples and reducing the number of hypotheses to be tested. Our evaluation shows that, up to 98% outlier ratio, the proposed method achieves comparable performance to the state of the art. At 99% outlier ratio, however, it outperforms the state of the art for both known-scale and unknown-scale problems. Especially for the latter, we observe a clear superiority in terms of robustness and speed.
Robust Single Rotation Averaging Revisited
Lee, Seong Hun, Civera, Javier
In this work, we propose a novel method for robust single rotation averaging that can efficiently handle an extremely large fraction of outliers. Our approach is to minimize the total truncated least unsquared deviations (TLUD) cost of geodesic distances. The proposed algorithm consists of three steps: First, we consider each input rotation as a potential initial solution and choose the one that yields the least sum of truncated chordal deviations. Next, we obtain the inlier set using the initial solution and compute its chordal $L_2$-mean. Finally, starting from this estimate, we iteratively compute the geodesic $L_1$-mean of the inliers using the Weiszfeld algorithm on $SO(3)$. An extensive evaluation shows that our method is robust against up to 99% outliers given a sufficient number of accurate inliers, outperforming the current state of the art.
Faster Optimization in S-Graphs Exploiting Hierarchy
Bavle, Hriday, Sanchez-Lopez, Jose Luis, Civera, Javier, Voos, Holger
3D scene graphs hierarchically represent the environment appropriately organizing different environmental entities in various layers. Our previous work on situational graphs extends the concept of 3D scene graph to SLAM by tightly coupling the robot poses with the scene graph entities, achieving state-of-the-art results. Though, one of the limitations of S-Graphs is scalability in really large environments due to the increased graph size over time, increasing the computational complexity. To overcome this limitation in this work we present an initial research of an improved version of S-Graphs exploiting the hierarchy to reduce the graph size by marginalizing redundant robot poses and their connections to the observations of the same structural entities. Firstly, we propose the generation and optimization of room-local graphs encompassing all graph entities within a room-like structure. These room-local graphs are used to compress the S-Graphs marginalizing the redundant robot keyframes within the given room. We then perform windowed local optimization of the compressed graph at regular time-distance intervals. A global optimization of the compressed graph is performed every time a loop closure is detected. We show similar accuracy compared to the baseline while showing a 39.81% reduction in the computation time with respect to the baseline.
GNSS-stereo-inertial SLAM for arable farming
Cremona, Javier, Civera, Javier, Kofman, Ernesto, Pire, Taihú
The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo-inertial ORB-SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in-house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state-of-the-art approaches. We characterize the performance of GNSS-stereo-inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual-inertial and loosely coupled GNSS-stereo-inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.
What's Wrong with the Absolute Trajectory Error?
Lee, Seong Hun, Civera, Javier
One of the limitations of the commonly used Absolute Trajectory Error (ATE) is that it is highly sensitive to outliers. As a result, in the presence of just a few outliers, it often fails to reflect the varying accuracy as the inlier trajectory error or the number of outliers varies. In this work, we propose an alternative error metric for evaluating the accuracy of the reconstructed camera trajectory. Our metric, named Discernible Trajectory Error (DTE), is computed in five steps: (1) Shift the ground-truth and estimated trajectories such that both of their geometric medians are located at the origin. (2) Rotate the estimated trajectory such that it minimizes the sum of geodesic distances between the corresponding camera orientations. (3) Scale the estimated trajectory such that the median distance of the cameras to their geometric median is the same as that of the ground truth. (4) Compute, winsorize and normalize the distances between the corresponding cameras. (5) Obtain the DTE by taking the average of the mean and the root-mean-square (RMS) of the resulting distances. This metric is an attractive alternative to the ATE, in that it is capable of discerning the varying trajectory accuracy as the inlier trajectory error or the number of outliers varies. Using the similar idea, we also propose a novel rotation error metric, named Discernible Rotation Error (DRE), which has similar advantages to the DTE. Furthermore, we propose a simple yet effective method for calibrating the camera-to-marker rotation, which is needed for the computation of our metrics. Our methods are verified through extensive simulations.
The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes
Recasens, David, Oswald, Martin R., Pollefeys, Marc, Civera, Javier
Estimating camera motion in deformable scenes poses a complex and open research challenge. Most existing non-rigid structure from motion techniques assume to observe also static scene parts besides deforming scene parts in order to establish an anchoring reference. However, this assumption does not hold true in certain relevant application cases such as endoscopies. Deformable odometry and SLAM pipelines, which tackle the most challenging scenario of exploratory trajectories, suffer from a lack of robustness and proper quantitative evaluation methodologies. To tackle this issue with a common benchmark, we introduce the Drunkard's Dataset, a challenging collection of synthetic data targeting visual navigation and reconstruction in deformable environments. This dataset is the first large set of exploratory camera trajectories with ground truth inside 3D scenes where every surface exhibits non-rigid deformations over time. Simulations in realistic 3D buildings lets us obtain a vast amount of data and ground truth labels, including camera poses, RGB images and depth, optical flow and normal maps at high resolution and quality. We further present a novel deformable odometry method, dubbed the Drunkard's Odometry, which decomposes optical flow estimates into rigid-body camera motion and non-rigid scene deformations. In order to validate our data, our work contains an evaluation of several baselines as well as a novel tracking error metric which does not require ground truth data. Dataset and code: https://davidrecasens.github.io/TheDrunkard'sOdometry/