Cirillo, Marcello
Integrated Motion Planning and Coordination for Industrial Vehicles
Cirillo, Marcello (Örebro University) | Pecora, Federico (Örebro University) | Andreasson, Henrik (Örebro University) | Uras, Tansel (University of Southern California) | Koenig, Sven (University of Southern California)
A growing interest in the industrial sector for autonomous ground vehicles has prompted significant investment in fleet management systems. Such systems need to accommodate on-line externally imposed temporal and spatial requirements, and to adhere to them even in the presence of contingencies. Moreover, a fleet management system should ensure correctness, i.e., refuse to commit to requirements that cannot be satisfied. We present an approach to obtain sets of alternative execution patterns (called trajectory envelopes) which provide these guarantees. The approach relies on a constraint-based representation shared among multiple solvers, each of which progressively refines trajectory envelopes following a least commitment principle.
Simple Temporal Problems with Taboo Regions
Kumar, T. K. Satish (University of Southern California) | Cirillo, Marcello (Orebro University) | Koenig, Sven (University of Southern California)
In this paper, we define and study the general framework of Simple Temporal Problems with Taboo regions (STPTs) and show how these problems capture metric temporal reasoning aspects which are common to many real-world applications. STPTs encode simple temporal constraints between events and user-defined taboo regions on the timeline, during which no event is allowed to take place. We discuss two different variants of STPTs. The first one deals with (instantaneous) events, while the second one allows for (durative) processes. We also provide polynomial-time algorithms for solving them. If all events or processes cannot be scheduled outside of the taboo regions, one needs to define and reason about "soft" STPTs. We show that even "soft" STPTs can be solved in polynomial time, using reductions to max-flow problems. The resulting algorithms allow for incremental computations, which is important for the successful application of our approach in real-time domains.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.
A Constraint-Based Approach for Proactive, Context-Aware Human Support
Pecora, Federico (Örebro University) | Cirillo, Marcello (Örebro University) | Dell' (Örebro University) | Osa, Francesca (Örebro University) | Ullberg, Jonas (Örebro University) | Saffiotti, Alessandro
In this article we address the problem of realizing a service-providing reasoning infrastructure for pro-active humanassistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented asrelations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM provides two key capabilities forcontextualized service provision: human activity recognition and planning for controlling pervasive actuation devices. Whiledrawing inspiration from several state-of-the-art approaches, SAM provides a unique feature which has thus far not been addressed in the literature, namely the seamless integration of these two key capabilities. It does so by leveraging a constraint-basedreasoning paradigm whereby both requirements for recognition and for planning/execution are represented as constraints andreasoned upon continuously.