Goto

Collaborating Authors

 Cima, Gianluca


Controlled Query Evaluation through Epistemic Dependencies

arXiv.org Artificial Intelligence

In this paper, we propose the use of epistemic dependencies to express data protection policies in Controlled Query Evaluation (CQE), which is a form of confidentiality-preserving query answering over ontologies and databases. The resulting policy language goes significantly beyond those proposed in the literature on CQE so far, allowing for very rich and practically interesting forms of data protection rules. We show the expressive abilities of our framework and study the data complexity of CQE for (unions of) conjunctive queries when ontologies are specified in the Description Logic DL-Lite_R. Interestingly, while we show that the problem is in general intractable, we prove tractability for the case of acyclic epistemic dependencies by providing a suitable query rewriting algorithm. The latter result paves the way towards the implementation and practical application of this new approach to CQE.


Combining Global and Local Merges in Logic-based Entity Resolution

arXiv.org Artificial Intelligence

In the recently proposed Lace framework for collective entity resolution, logical rules and constraints are used to identify pairs of entity references (e.g. author or paper ids) that denote the same entity. This identification is global: all occurrences of those entity references (possibly across multiple database tuples) are deemed equal and can be merged. By contrast, a local form of merge is often more natural when identifying pairs of data values, e.g. some occurrences of 'J. Smith' may be equated with 'Joe Smith', while others should merge with 'Jane Smith'. This motivates us to extend Lace with local merges of values and explore the computational properties of the resulting formalism.


QDEF and Its Approximations in OBDM

arXiv.org Artificial Intelligence

Given an input dataset (i.e., a set of tuples), query definability in Ontology-based Data Management (OBDM) amounts to find a query over the ontology whose certain answers coincide with the tuples in the given dataset. We refer to such a query as a characterization of the dataset with respect to the OBDM system. Our first contribution is to propose approximations of perfect characterizations in terms of recall (complete characterizations) and precision (sound characterizations). A second contribution is to present a thorough complexity analysis of three computational problems, namely verification (check whether a given query is a perfect, or an approximated characterization of a given dataset), existence (check whether a perfect, or a best approximated characterization of a given dataset exists), and computation (compute a perfect, or best approximated characterization of a given dataset).