Goto

Collaborating Authors

 Chung, Young-joo


Price-guided user attention in large-scale E-commerce group recommendation

arXiv.org Artificial Intelligence

Existing group recommender systems utilize attention mechanisms to identify critical users who influence group decisions the most. We analyzed user attention scores from a widely-used group recommendation model on a real-world E-commerce dataset and found that item price and user interaction history significantly influence the selection of critical users. When item prices are low, users with extensive interaction histories are more influential in group decision-making. Conversely, their influence diminishes with higher item prices. Based on these observations, we propose a novel group recommendation approach that incorporates item price as a guiding factor for user aggregation. Our model employs an adaptive sigmoid function to adjust output logits based on item prices, enhancing the accuracy of user aggregation. Our model can be plugged into any attention-based group recommender system if the price information is available. We evaluate our model's performance on a public benchmark and a real-world dataset. We compare it with other state-of-the-art group recommendation methods. Our results demonstrate that our price-guided user attention approach outperforms the state-of-the-art methods in terms of hit ratio and mean square error.


Meta-Shop: Improving Item Advertisement For Small Businesses

arXiv.org Artificial Intelligence

In this paper, we study item advertisements for small businesses. This application recommends prospective customers to specific items requested by businesses. From analysis, we found that the existing Recommender Systems (RS) were ineffective for small/new businesses with a few sales history. Training samples in RS can be highly biased toward popular businesses with sufficient sales and can decrease advertising performance for small businesses. We propose a meta-learning-based RS to improve advertising performance for small/new businesses and shops: Meta-Shop. Meta-Shop leverages an advanced meta-learning optimization framework and builds a model for a shop-level recommendation. It also integrates and transfers knowledge between large and small shops, consequently learning better features in small shops. We conducted experiments on a real-world E-commerce dataset and a public benchmark dataset. Meta-Shop outperformed a production baseline and the state-of-the-art RS models. Specifically, it achieved up to 16.6% relative improvement of Recall@1M and 40.4% relative improvement of nDCG@3 for user recommendations to new shops compared to the other RS models.


Recommending Short-lived Dynamic Packages for Golf Booking Services

arXiv.org Artificial Intelligence

We introduce an approach to recommending short-lived dynamic packages for golf booking services. Two challenges are addressed in this work. The first is the short life of the items, which puts the system in a state of a permanent cold start. The second is the uninformative nature of the package attributes, which makes clustering or figuring latent packages challenging. Although such settings are fairly pervasive, they have not been studied in traditional recommendation research, and there is thus a call for original approaches for recommender systems. In this paper, we introduce a hybrid method that leverages user analysis and its relation to the packages, as well as package pricing and environmental analysis, and traditional collaborative filtering. The proposed approach achieved appreciable improvement in precision compared with baselines.