Chung, Soo-Whan
Imaginary Voice: Face-styled Diffusion Model for Text-to-Speech
Lee, Jiyoung, Chung, Joon Son, Chung, Soo-Whan
The goal of this work is zero-shot text-to-speech synthesis, with speaking styles and voices learnt from facial characteristics. Inspired by the natural fact that people can imagine the voice of someone when they look at his or her face, we introduce a face-styled diffusion text-to-speech (TTS) model within a unified framework learnt from visible attributes, called Face-TTS. This is the first time that face images are used as a condition to train a TTS model. We jointly train cross-model biometrics and TTS models to preserve speaker identity between face images and generated speech segments. We also propose a speaker feature binding loss to enforce the similarity of the generated and the ground truth speech segments in speaker embedding space. Since the biometric information is extracted directly from the face image, our method does not require extra fine-tuning steps to generate speech from unseen and unheard speakers. We train and evaluate the model on the LRS3 dataset, an in-the-wild audio-visual corpus containing background noise and diverse speaking styles. The project page is https://facetts.github.io.
MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech Recognition
Kwon, Yoohwan, Chung, Soo-Whan
Multi-lingual speech recognition aims to distinguish linguistic expressions in different languages and integrate acoustic processing simultaneously. In contrast, current multi-lingual speech recognition research follows a language-aware paradigm, mainly targeted to improve recognition performance rather than discriminate language characteristics. In this paper, we present a multi-lingual speech recognition network named Mixture-of-Language-Expert(MoLE), which digests speech in a variety of languages. Specifically, MoLE analyzes linguistic expression from input speech in arbitrary languages, activating a language-specific expert with a lightweight language tokenizer. The tokenizer not only activates experts, but also estimates the reliability of the activation. Based on the reliability, the activated expert and the language-agnostic expert are aggregated to represent language-conditioned embedding for efficient speech recognition. Our proposed model is evaluated in 5 languages scenario, and the experimental results show that our structure is advantageous on multi-lingual recognition, especially for speech in low-resource language.
Diffusion-based Generative Speech Source Separation
Scheibler, Robin, Ji, Youna, Chung, Soo-Whan, Byun, Jaeuk, Choe, Soyeon, Choi, Min-Seok
We propose DiffSep, a new single channel source separation method based on score-matching of a stochastic differential equation (SDE). We craft a tailored continuous time diffusion-mixing process starting from the separated sources and converging to a Gaussian distribution centered on their mixture. This formulation lets us apply the machinery of score-based generative modelling. First, we train a neural network to approximate the score function of the marginal probabilities or the diffusion-mixing process. Then, we use it to solve the reverse time SDE that progressively separates the sources starting from their mixture. We propose a modified training strategy to handle model mismatch and source permutation ambiguity. Experiments on the WSJ0 2mix dataset demonstrate the potential of the method. Furthermore, the method is also suitable for speech enhancement and shows performance competitive with prior work on the VoiceBank-DEMAND dataset.