Goto

Collaborating Authors

 Chung, Jen Jen


Automatic Extension of a Symbolic Mobile Manipulation Skill Set

arXiv.org Artificial Intelligence

Symbolic planning can provide an intuitive interface for non-expert users to operate autonomous robots by abstracting away much of the low-level programming. However, symbolic planners assume that the initially provided abstract domain and problem descriptions are closed and complete. This means that they are fundamentally unable to adapt to changes in the environment or task that are not captured by the initial description. We propose a method that allows an agent to automatically extend its skill set, and thus the abstract description, upon encountering such a situation. We introduce strategies for generalizing from previous experience, completing sequences of key actions and discovering preconditions to ensure the efficiency of our skill sequence exploration scheme. The resulting system is evaluated in simulation on object rearrangement tasks. Compared to a Monte Carlo Tree Search baseline, our strategies for efficient search have on average a 29% higher success rate at a 68% faster runtime.


With Whom to Communicate: Learning Efficient Communication for Multi-Robot Collision Avoidance

arXiv.org Artificial Intelligence

Decentralized multi-robot systems typically perform coordinated motion planning by constantly broadcasting their intentions as a means to cope with the lack of a central system coordinating the efforts of all robots. Especially in complex dynamic environments, the coordination boost allowed by communication is critical to avoid collisions between cooperating robots. However, the risk of collision between a pair of robots fluctuates through their motion and communication is not always needed. Additionally, constant communication makes much of the still valuable information shared in previous time steps redundant. This paper presents an efficient communication method that solves the problem of "when" and with "whom" to communicate in multi-robot collision avoidance scenarios. In this approach, every robot learns to reason about other robots' states and considers the risk of future collisions before asking for the trajectory plans of other robots. We evaluate and verify the proposed communication strategy in simulation with four quadrotors and compare it with three baseline strategies: non-communicating, broadcasting and a distance-based method broadcasting information with quadrotors within a predefined distance.