Goto

Collaborating Authors

 Chunara, Rumi


Cost-Efficient Continual Learning with Sufficient Exemplar Memory

arXiv.org Artificial Intelligence

Continual learning (CL) research typically assumes highly constrained exemplar memory resources. However, in many real-world scenarios--especially in the era of large foundation models--memory is abundant, while GPU computational costs are the primary bottleneck. In this work, we investigate CL in a novel setting where exemplar memory is ample (i.e., sufficient exemplar memory). Unlike prior methods designed for strict exemplar memory constraints, we propose a simple yet effective approach that directly operates in the model's weight space through a combination of weight resetting and averaging techniques. Our method achieves state-of-the-art performance while reducing the computational cost to a quarter or third of existing methods. These findings challenge conventional CL assumptions and provide a practical baseline for computationally efficient CL applications. Continual learning (CL) has attracted significant attention as a paradigm enabling machine learning models to adapt to sequential tasks while overcoming catastrophic forgetting of previously acquired knowledge (Wang et al., 2024).


Disparate Effect Of Missing Mediators On Transportability of Causal Effects

arXiv.org Artificial Intelligence

Transported mediation effects provide an avenue to understand how upstream interventions (such as improved neighborhood conditions like green spaces) would work differently when applied to different populations as a result of factors that mediate the effects. However, when mediators are missing in the population where the effect is to be transported, these estimates could be biased. We study this issue of missing mediators, motivated by challenges in public health, wherein mediators can be missing, not at random. We propose a sensitivity analysis framework that quantifies the impact of missing mediator data on transported mediation effects. This framework enables us to identify the settings under which the conditional transported mediation effect is rendered insignificant for the subgroup with missing mediator data. Specifically, we provide the bounds on the transported mediation effect as a function of missingness. We then apply the framework to longitudinal data from the Moving to Opportunity Study, a large-scale housing voucher experiment, to quantify the effect of missing mediators on transport effect estimates of voucher receipt, an upstream intervention on living location, in childhood on subsequent risk of mental health or substance use disorder mediated through parental health across sites. Our findings provide a tangible understanding of how much missing data can be withstood for unbiased effect estimates.


Generalization in Healthcare AI: Evaluation of a Clinical Large Language Model

arXiv.org Artificial Intelligence

Advances in large language models (LLMs) provide new opportunities in healthcare for improved patient care, clinical decision-making, and enhancement of physician and administrator workflows. However, the potential of these models importantly depends on their ability to generalize effectively across clinical environments and populations, a challenge often underestimated in early development. To better understand reasons for these challenges and inform mitigation approaches, we evaluated ClinicLLM, an LLM trained on [HOSPITAL]'s clinical notes, analyzing its performance on 30-day all-cause readmission prediction focusing on variability across hospitals and patient characteristics. We found poorer generalization particularly in hospitals with fewer samples, among patients with government and unspecified insurance, the elderly, and those with high comorbidities. To understand reasons for lack of generalization, we investigated sample sizes for fine-tuning, note content (number of words per note), patient characteristics (comorbidity level, age, insurance type, borough), and health system aspects (hospital, all-cause 30-day readmission, and mortality rates). We used descriptive statistics and supervised classification to identify features. We found that, along with sample size, patient age, number of comorbidities, and the number of words in notes are all important factors related to generalization. Finally, we compared local fine-tuning (hospital specific), instance-based augmented fine-tuning and cluster-based fine-tuning for improving generalization. Among these, local fine-tuning proved most effective, increasing AUC by 0.25% to 11.74% (most helpful in settings with limited data). Overall, this study provides new insights for enhancing the deployment of large language models in the societally important domain of healthcare, and improving their performance for broader populations.


Impact on Public Health Decision Making by Utilizing Big Data Without Domain Knowledge

arXiv.org Artificial Intelligence

New data sources, and artificial intelligence (AI) methods to extract information from them are becoming plentiful, and relevant to decision making in many societal applications. An important example is street view imagery, available in over 100 countries, and considered for applications such as assessing built environment aspects in relation to community health outcomes. Relevant to such uses, important examples of bias in the use of AI are evident when decision-making based on data fails to account for the robustness of the data, or predictions are based on spurious correlations. To study this risk, we utilize 2.02 million GSV images along with health, demographic, and socioeconomic data from New York City. Initially, we demonstrate that built environment characteristics inferred from GSV labels at the intra-city level may exhibit inadequate alignment with the ground truth. We also find that the average individual-level behavior of physical inactivity significantly mediates the impact of built environment features by census tract, as measured through GSV. Finally, using a causal framework which accounts for these mediators of environmental impacts on health, we find that altering 10% of samples in the two lowest tertiles would result in a 4.17 (95% CI 3.84 to 4.55) or 17.2 (95% CI 14.4 to 21.3) times bigger decrease on the prevalence of obesity or diabetes, than the same proportional intervention on the number of crosswalks by census tract. This work illustrates important issues of robustness and model specification for informing effective allocation of interventions using new data sources.


Understanding Disparities in Post Hoc Machine Learning Explanation

arXiv.org Artificial Intelligence

Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.


A Brief Tutorial on Sample Size Calculations for Fairness Audits

arXiv.org Artificial Intelligence

In fairness audits, a standard objective is to detect whether a given algorithm performs substantially differently between subgroups. Properly powering the statistical analysis of such audits is crucial for obtaining informative fairness assessments, as it ensures a high probability of detecting unfairness when it exists. However, limited guidance is available on the amount of data necessary for a fairness audit, lacking directly applicable results concerning commonly used fairness metrics. Additionally, the consideration of unequal subgroup sample sizes is also missing. In this tutorial, we address these issues by providing guidance on how to determine the required subgroup sample sizes to maximize the statistical power of hypothesis tests for detecting unfairness. Our findings are applicable to audits of binary classification models and multiple fairness metrics derived as summaries of the confusion matrix. Furthermore, we discuss other aspects of audit study designs that can increase the reliability of audit results.


Causal Multi-Level Fairness

arXiv.org Machine Learning

Algorithmic systems are known to impact marginalized groups severely, and more so, if all sources of bias are not considered. While work in algorithmic fairness to-date has primarily focused on addressing discrimination due to individually linked attributes, social science research elucidates how some properties we link to individuals can be conceptualized as having causes at population (e.g. structural/social) levels and it may be important to be fair to attributes at multiple levels. For example, instead of simply considering race as a protected attribute of an individual, it can be thought of as the perceived race of an individual which in turn may be affected by neighborhood-level factors. This multi-level conceptualization is relevant to questions of fairness, as it may not only be important to take into account if the individual belonged to another demographic group, but also if the individual received advantaged treatment at the population-level. In this paper, we formalize the problem of multi-level fairness using tools from causal inference in a manner that allows one to assess and account for effects of sensitive attributes at multiple levels. We show importance of the problem by illustrating residual unfairness if population-level sensitive attributes are not accounted for. Further, in the context of a real-world task of predicting income based on population and individual-level attributes, we demonstrate an approach for mitigating unfairness due to multi-level sensitive attributes.


Population-aware Hierarchical Bayesian Domain Adaptation via Multiple-component Invariant Learning

arXiv.org Machine Learning

While machine learning is rapidly being developed and deployed in health settings such as influenza prediction, there are critical challenges in using data from one environment in another due to variability in features; even within disease labels there can be differences (e.g. "fever" may mean something different reported in a doctor's office versus in an online app). Moreover, models are often built on passive, observational data which contain different distributions of population subgroups (e.g. men or women). Thus, there are two forms of instability between environments in this observational transport problem. We first harness knowledge from health to conceptualize the underlying causal structure of this problem in a health outcome prediction task. Based on sources of stability in the model, we posit that for human-sourced data and health prediction tasks we can combine environment and population information in a novel population-aware hierarchical Bayesian domain adaptation framework that harnesses multiple invariant components through population attributes when needed. We study the conditions under which invariant learning fails, leading to reliance on the environment-specific attributes. Experimental results for an influenza prediction task on four datasets gathered from different contexts show the model can improve prediction in the case of largely unlabelled target data from a new environment and different constituent population, by harnessing both environment and population invariant information. This work represents a novel, principled way to address a critical challenge by blending domain (health) knowledge and algorithmic innovation. The proposed approach will have a significant impact in many social settings wherein who and where the data comes from matters.


Using Contextual Information to Improve Blood Glucose Prediction

arXiv.org Machine Learning

Blood glucose value prediction is an important task in diabetes management. While it is reported that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet, alongside the influence of diabetes pathologies, we need more research on data and methodologies to incorporate and evaluate signals about such temporal context into prediction models. Person-generated data sources, such as actively contributed surveys as well as passively mined data from social media offer opportunity to capture such context, however the self-reported nature and sparsity of such data mean that such data are noisier and less specific than physiological measures such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model to both address these data challenges and combine blood glucose and latent feature representations of contextual data for a novel multi-signal blood glucose prediction task. We find this approach outperforms common methods for multi-variate data, as well as using the blood glucose values in isolation. Given a robust evaluation across two blood glucose datasets with different forms of contextual information, we conclude that multi-signal Gaussian Processes can improve blood glucose prediction by using contextual information and may provide a significant shift in blood glucose prediction research and practice.


Reports of the Workshops Held at the 2018 International AAAI Conference on Web and Social Media

AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence’s 12th International Conference on Web and Social Media (AAAI-18) was held at Stanford University, Stanford, California USA, on Monday, June 25, 2018. There were fourteen workshops in the program: Algorithmic Personalization and News: Risks and Opportunities; Beyond Online Data: Tackling Challenging Social Science Questions; Bridging the Gaps: Social Media, Use and Well-Being; Chatbot; Data-Driven Personas and Human-Driven Analytics: Automating Customer Insights in the Era of Social Media;  Designed Data for Bridging the Lab and the Field: Tools, Methods, and Challenges in Social Media Experiments; Emoji Understanding and Applications in Social Media; Event Analytics Using Social Media Data; Exploring Ethical Trade-Offs in Social Media Research; Making Sense of Online Data for Population Research; News and Public Opinion; Social Media and Health: A Focus on Methods for Linking Online and Offline Data; Social Web for Environmental and Ecological Monitoring and The ICWSM Science Slam. Workshops were held on the first day of the conference. Workshop participants met and discussed issues with a selected focus — providing an informal setting for active exchange among researchers, developers, and users on topics of current interest. Organizers from nine of the  workshops submitted reports, which are reproduced in this report. Brief summaries of the other five workshops have been reproduced from their website descriptions.