Goto

Collaborating Authors

 Chun, Byung-Gon


Accelerating Multi-Model Inference by Merging DNNs of Different Weights

arXiv.org Machine Learning

Standardized DNN models that have been proved to perform well on machine learning tasks are widely used and often adopted as-is to solve downstream tasks, forming the transfer learning paradigm. However, when serving multiple instances of such DNN models from a cluster of GPU servers, existing techniques to improve GPU utilization such as batching are inapplicable because models often do not share weights due to fine-tuning. We propose NetFuse, a technique of merging multiple DNN models that share the same architecture but have different weights and different inputs. NetFuse is made possible by replacing operations with more general counterparts that allow a set of weights to be associated with only a certain set of inputs. Experiments on ResNet-50, ResNeXt-50, BERT, and XLNet show that NetFuse can speed up DNN inference time up to 3.6x on a NVIDIA V100 GPU, and up to 3.0x on a TITAN Xp GPU when merging 32 model instances, while only using up a small additional amount of GPU memory.


Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage Trees

arXiv.org Machine Learning

Hyper-parameter optimization is crucial for pushing the accuracy of a deep learning model to its limits. A hyper-parameter optimization job, referred to as a study, involves numerous trials of training a model using different training knobs, and therefore is very computation-heavy, typically taking hours and days to finish. We observe that trials issued from hyper-parameter optimization algorithms often share common hyper-parameter sequence prefixes. Based on this observation, we propose Hippo, a hyper-parameter optimization system that removes redundancy in the training process to reduce the overall amount of computation significantly. Instead of executing each trial independently as in existing hyper-parameter optimization systems, Hippo breaks down the hyper-parameter sequences into stages and merges common stages to form a tree of stages (called a stage-tree), then executes a stage once per tree on a distributed GPU server environment. Hippo is applicable to not only single studies, but multi-study scenarios as well, where multiple studies of the same model and search space can be formulated as trees of stages. Evaluations show that Hippo's stage-based execution strategy outperforms trial-based methods such as Ray Tune for several models and hyper-parameter optimization algorithms, reducing GPU-hours and end-to-end training time significantly.


Making Classical Machine Learning Pipelines Differentiable: A Neural Translation Approach

arXiv.org Machine Learning

Classical Machine Learning (ML) pipelines often comprise of multiple ML models where models, within a pipeline, are trained in isolation. Conversely, when training neural network models, layers composing the neural models are simultaneously trained using backpropagation. We argue that the isolated training scheme of ML pipelines is sub-optimal, since it cannot jointly optimize multiple components. To this end, we propose a framework that translates a pre-trained ML pipeline into a neural network and fine-tunes the ML models within the pipeline jointly using backpropagation. Our experiments show that fine-tuning of the translated pipelines is a promising technique able to increase the final accuracy.


PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

arXiv.org Machine Learning

Machine Learning models are often composed of pipelines of transformations. While this design allows to efficiently execute single model components at training time, prediction serving has different requirements such as low latency, high throughput and graceful performance degradation under heavy load. Current prediction serving systems consider models as black boxes, whereby prediction-time-specific optimizations are ignored in favor of ease of deployment. In this paper, we present PRETZEL, a prediction serving system introducing a novel white box architecture enabling both end-to-end and multi-model optimizations. Using production-like model pipelines, our experiments show that PRETZEL is able to introduce performance improvements over different dimensions; compared to state-of-the-art approaches PRETZEL is on average able to reduce 99th percentile latency by 5.5x while reducing memory footprint by 25x, and increasing throughput by 4.7x.


Improving the Expressiveness of Deep Learning Frameworks with Recursion

arXiv.org Artificial Intelligence

Recursive neural networks have widely been used by researchers to handle applications with recursively or hierarchically structured data. However, embedded control flow deep learning frameworks such as TensorFlow, Theano, Caffe2, and MXNet fail to efficiently represent and execute such neural networks, due to lack of support for recursion. In this paper, we add recursion to the programming model of existing frameworks by complementing their design with recursive execution of dataflow graphs as well as additional APIs for recursive definitions. Unlike iterative implementations, which can only understand the topological index of each node in recursive data structures, our recursive implementation is able to exploit the recursive relationships between nodes for efficient execution based on parallel computation. We present an implementation on TensorFlow and evaluation results with various recursive neural network models, showing that our recursive implementation not only conveys the recursive nature of recursive neural networks better than other implementations, but also uses given resources more effectively to reduce training and inference time.


Mantis: Predicting System Performance through Program Analysis and Modeling

arXiv.org Artificial Intelligence

We present Mantis, a new framework that automatically predicts program performance with high accuracy. Mantis integrates techniques from programming language and machine learning for performance modeling, and is a radical departure from traditional approaches. Mantis extracts program features, which are information about program execution runs, through program instrumentation. It uses machine learning techniques to select features relevant to performance and creates prediction models as a function of the selected features. Through program analysis, it then generates compact code slices that compute these feature values for prediction. Our evaluation shows that Mantis can achieve more than 93% accuracy with less than 10% training data set, which is a significant improvement over models that are oblivious to program features. The system generates code slices that are cheap to compute feature values.