Chun, Andy Hon Wai


Optimizing Limousine Service with AI

AI Magazine

A common problem for companies with strong business growth is that it is hard to find enough experienced staff to support expansion needs. This article is a case study of how one of the largest travel agencies in Hong Kong alleviated this problem by using AI to support decision-making and problem-solving so that their planners and controllers can work more effectively and efficiently to sustain business growth while maintaining consistent quality of service. AI is used in a mission critical fleet management system (FMS) that supports the scheduling and management of a fleet of luxury limousines for business travelers. The AI problem was modeled as a constraint satisfaction problem (CSP).


Optimizing Limousine Service with AI

AI Magazine

A common problem for companies with strong business growth is that it is hard to find enough experienced staff to support expansion needs. This problem is particular pronounced for operations planners and controllers who must be very highly knowledgeable and experienced with the business domain. This article is a case study of how one of the largest travel agencies in Hong Kong alleviated this problem by using AI to support decision-making and problem-solving so that their planners and controllers can work more effectively and efficiently to sustain business growth while maintaining consistent quality of service. AI is used in a mission critical fleet management system (FMS) that supports the scheduling and management of a fleet of luxury limousines for business travelers. The AI problem was modeled as a constraint satisfaction problem (CSP). The use of AI enabled the travel agency to sign up additional hotel partners, handle more orders and expand their fleet with their existing team of planners and controllers. Using modern web 2.0 architecture and proven AI technology, we were able to achieve low-risk implementation and deployment success with concrete and measurable business benefits.


An AI Framework for the Automatic Assessment of e-Government Forms

AI Magazine

This article describes the architecture and AI technology behind an XML-based AI framework designed to streamline e-government form processing. The framework performs several crucial assessment and decision support functions, including workflow case assignment, automatic assessment, follow-up action generation, precedent case retrieval, and learning of current practices. To implement these services, several AI techniques were used, including rule-based processing, schema-based reasoning, AI clustering, case-based reasoning, data mining, and machine learning. The primary objective of using AI for e-government form processing is of course to provide faster and higher quality service as well as ensure that all forms are processed fairly and accurately.


An AI Framework for the Automatic Assessment of e-Government Forms

AI Magazine

This article describes the architecture and AI technology behind an XML-based AI framework designed to streamline e-government form processing. The framework performs several crucial assessment and decision support functions, including workflow case assignment, automatic assessment, follow-up action generation, precedent case retrieval, and learning of current practices. To implement these services, several AI techniques were used, including rule-based processing, schema-based reasoning, AI clustering, case-based reasoning, data mining, and machine learning. The primary objective of using AI for e-government form processing is of course to provide faster and higher quality service as well as ensure that all forms are processed fairly and accurately. With AI, all relevant laws and regulations as well as current practices are guaranteed to be considered and followed. An AI framework has been used to implement an AI module for one of the busiest immigration agencies in the world.


Stand-Allocation System (SAS): A Constraint-Based System Developed with Software Components

AI Magazine

The stand-allocation system (SAS) is an AI application developed for the Hong Kong International Airport (HKIA) at Chek Lap Kok. The system ensures a high standard of quality in customer service, airport safety, and use of stand resources. This article describes our experience in developing an AI system using standard off-the-shelf software components. SAS is an example of how development methodologies used to construct modern AI applications have become fully inline with mainstream practices.


Stand-Allocation System (SAS): A Constraint-Based System Developed with Software Components

AI Magazine

The stand-allocation system (SAS) is an AI application developed for the Hong Kong International Airport (HKIA) at Chek Lap Kok. sas uses constraint-programming techniques to assign parking stands to aircraft and schedules tow movements based on a set of business and operational constraints. The system provides planning, real-time operation, and problem-solving capabilities. sas generates a stand-allocation plan that finely balances the objectives of the airline-handling agents, the convenience of passengers, and the operational constraints of the airport. The system ensures a high standard of quality in customer service, airport safety, and use of stand resources. This article describes our experience in developing an AI system using standard off-the-shelf software components. SAS is an example of how development methodologies used to construct modern AI applications have become fully inline with mainstream practices.