Goto

Collaborating Authors

 Chuang, Kun-Ta


CAND: Cross-Domain Ambiguity Inference for Early Detecting Nuanced Illness Deterioration

arXiv.org Artificial Intelligence

Early detection of patient deterioration is essential for timely treatment, with vital signs like heart rates being key health indicators. Existing methods tend to solely analyze vital sign waveforms, ignoring transition relationships of waveforms within each vital sign and the correlation strengths among various vital signs. Such studies often overlook nuanced illness deterioration, which is the early sign of worsening health but is difficult to detect. In this paper, we introduce CAND, a novel method that organizes the transition relationships and the correlations within and among vital signs as domain-specific and cross-domain knowledge. CAND jointly models these knowledge in a unified representation space, considerably enhancing the early detection of nuanced illness deterioration. In addition, CAND integrates a Bayesian inference method that utilizes augmented knowledge from domain-specific and cross-domain knowledge to address the ambiguities in correlation strengths. With this architecture, the correlation strengths can be effectively inferred to guide joint modeling and enhance representations of vital signs. This allows a more holistic and accurate interpretation of patient health. Our experiments on a real-world ICU dataset demonstrate that CAND significantly outperforms existing methods in both effectiveness and earliness in detecting nuanced illness deterioration. Moreover, we conduct a case study for the interpretable detection process to showcase the practicality of CAND.


Uncertainty-Aware Critic Augmentation for Hierarchical Multi-Agent EV Charging Control

arXiv.org Artificial Intelligence

The advanced bidirectional EV charging and discharging technology, aimed at supporting grid stability and emergency operations, has driven a growing interest in workplace applications. It not only effectively reduces electricity expenses but also enhances the resilience of handling practical issues, such as peak power limitation, fluctuating energy prices, and unpredictable EV departures. However, existing EV charging strategies have yet to fully consider these factors in a way that benefits both office buildings and EV users simultaneously. To address these issues, we propose HUCA, a novel real-time charging control for regulating energy demands for both the building and electric vehicles. HUCA employs hierarchical actor-critic networks to dynamically reduce electricity costs in buildings, accounting for the needs of EV charging in the dynamic pricing scenario. To tackle the uncertain EV departures, a new critic augmentation is introduced to account for departure uncertainties in evaluating the charging decisions, while maintaining the robustness of the charging control. Experiments on real-world electricity datasets under both simulated certain and uncertain departure scenarios demonstrate that HUCA outperforms baselines in terms of total electricity costs while maintaining competitive performance in fulfilling EV charging requirements. A case study also manifests that HUCA effectively balances energy supply between the building and EVs based on real-time information.