Goto

Collaborating Authors

 Chu, Zhufei


DeepCircuitX: A Comprehensive Repository-Level Dataset for RTL Code Understanding, Generation, and PPA Analysis

arXiv.org Artificial Intelligence

This paper introduces DeepCircuitX, a comprehensive repository-level dataset designed to advance RTL (Register Transfer Level) code understanding, generation, and power-performance-area (PPA) analysis. Unlike existing datasets that are limited to either file-level RTL code or physical layout data, DeepCircuitX provides a holistic, multilevel resource that spans repository, file, module, and block-level RTL code. This structure enables more nuanced training and evaluation of large language models (LLMs) for RTL-specific tasks. DeepCircuitX is enriched with Chain of Thought (CoT) annotations, offering detailed descriptions of functionality and structure at multiple levels. These annotations enhance its utility for a wide range of tasks, including RTL code understanding, generation, and completion. Additionally, the dataset includes synthesized netlists and PPA metrics, facilitating early-stage design exploration and enabling accurate PPA prediction directly from RTL code. We demonstrate the dataset's effectiveness on various LLMs finetuned with our dataset and confirm the quality with human evaluations. Our results highlight DeepCircuitX as a critical resource for advancing RTL-focused machine learning applications in hardware design automation.Our data is available at https://zeju.gitbook.io/lcm-team.


DeepCell: Multiview Representation Learning for Post-Mapping Netlists

arXiv.org Artificial Intelligence

Representation learning for post-mapping (PM) netlists is a critical challenge in Electronic Design Automation (EDA), driven by the diverse and complex nature of modern circuit designs. Existing approaches focus on intermediate representations like And-Inverter Graphs (AIGs), limiting their applicability to post-synthesis stages. We introduce DeepCell, a multiview representation learning framework that integrates structural and functional insights from both PM netlists and AIGs to learn rich, generalizable embeddings. At its core, DeepCell employs the novel Mask Circuit Modeling (MCM) mechanism, which refines PM netlist representations in a self-supervised manner using pretrained AIG encoders. DeepCell sets a new benchmark in PM netlist representation, outperforming existing methods in predictive accuracy and reconstruction fidelity. To validate its efficacy, we apply DeepCell to functional Engineering Change Orders (ECO), achieving significant reductions in patch generation costs and runtime while improving patch quality.


OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis

arXiv.org Artificial Intelligence

--This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine learning (ML) applications within the logic synthesis process. Previous dataset generation flows were tailored for specific tasks or lacked integrated machine learning capabilities. While OpenLS-DGF supports various machine learning tasks by encapsulating the three fundamental steps of logic synthesis: Boolean representation, logic optimization, and technology mapping. It preserves the original information in both V erilog and machine-learning-friendly GraphML formats. The verilog files offer semi-customizable capabilities, enabling researchers to insert additional steps and incrementally refine the generated dataset. Furthermore, OpenLS-DGF includes an adaptive circuit engine that facilitates the final dataset management and downstream tasks. The generated OpenLS-D-v1 dataset comprises 46 combinational designs from established benchmarks, totaling over 966,000 Boolean circuits. OpenLS-D-v1 supports integrating new data features, making it more versatile for new challenges. This paper demonstrates the versatility of OpenLS-D-v1 through four distinct downstream tasks: circuit classification, circuit ranking, quality of results (QoR) prediction, and probability prediction. Each task is chosen to represent essential steps of logic synthesis, and the experimental results show the generated dataset from OpenLS-DGF achieves prominent diversity and applicability. OGIC synthesis is a key phase in the electronic design automation (EDA) flow of digital circuits, translating high-level specifications into a gate-level netlist. Recently, there has been a trend towards adopting ML approaches for the EDA [1] domain. V arious machine learning methodologies have been proposed, demonstrating improvements in different aspects of the logic synthesis process, including logic optimization [2], [3], [4], [5], [6], technology mapping [7], [8], [9], and formal verification [10], [11]. These machine learning-based techniques have shown their promise in improving the efficiency and quality of logic synthesis steps.


The prediction of the quality of results in Logic Synthesis using Transformer and Graph Neural Networks

arXiv.org Artificial Intelligence

In the logic synthesis stage, structure transformations in the synthesis tool need to be combined into optimization sequences and act on the circuit to meet the specified circuit area and delay. However, logic synthesis optimization sequences are time-consuming to run, and predicting the quality of the results (QoR) against the synthesis optimization sequence for a circuit can help engineers find a better optimization sequence faster. In this work, we propose a deep learning method to predict the QoR of unseen circuit-optimization sequences pairs. Specifically, the structure transformations are translated into vectors by embedding methods and advanced natural language processing (NLP) technology (Transformer) is used to extract the features of the optimization sequences. In addition, to enable the prediction process of the model to be generalized from circuit to circuit, the graph representation of the circuit is represented as an adjacency matrix and a feature matrix. Graph neural networks(GNN) are used to extract the structural features of the circuits. For this problem, the Transformer and three typical GNNs are used. Furthermore, the Transformer and GNNs are adopted as a joint learning policy for the QoR prediction of the unseen circuit-optimization sequences. The methods resulting from the combination of Transformer and GNNs are benchmarked. The experimental results show that the joint learning of Transformer and GraphSage gives the best results. The Mean Absolute Error (MAE) of the predicted result is 0.412.


DeepGate2: Functionality-Aware Circuit Representation Learning

arXiv.org Artificial Intelligence

Circuit representation learning aims to obtain neural representations of circuit elements and has emerged as a promising research direction that can be applied to various EDA and logic reasoning tasks. Existing solutions, such as DeepGate, have the potential to embed both circuit structural information and functional behavior. However, their capabilities are limited due to weak supervision or flawed model design, resulting in unsatisfactory performance in downstream tasks. In this paper, we introduce DeepGate2, a novel functionality-aware learning framework that significantly improves upon the original DeepGate solution in terms of both learning effectiveness and efficiency. Our approach involves using pairwise truth table differences between sampled logic gates as training supervision, along with a well-designed and scalable loss function that explicitly considers circuit functionality. Additionally, we consider inherent circuit characteristics and design an efficient one-round graph neural network (GNN), resulting in an order of magnitude faster learning speed than the original DeepGate solution. Experimental results demonstrate significant improvements in two practical downstream tasks: logic synthesis and Boolean satisfiability solving. The code is available at https://github.com/cure-lab/DeepGate2